Jump to content

Chloroplast capture

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by InternetArchiveBot (talk | contribs) at 15:29, 20 July 2020 (Rescuing 1 sources and tagging 0 as dead.) #IABot (v2.0.1). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Chloroplast capture is an evolutionary process through which inter-species hybridization and subsequent backcrosses yield a plant with new genetic combination of nuclear and chloroplast genomes.[1] For instance, 1) species A's (having chloroplast genome a and nuclear genome AA) pollen hybridizes (backcross) to species B's (b and BB) ovule, yielding the 1st hybrid (F1) with chloroplast genome b and nuclear genome A (50%) and B (50%); 2) species A's pollen again hybridizes (backcross) to F1's ovule, yielding the 2nd hybrid (F2) with chloroplast genome b and nuclear genome A (75%) and B (25%); 3) species A's pollen again hybridizes (backcross) to F2's ovule, yielding the 3rd hybrid (F3) with chloroplast genome b and nuclear genome A (87.5%) and B (12.5%); 4) after further backcross generations, a plant is obtained with the new genetic combination (chloroplast genome b and nuclear genome A).

Known cases of chloroplast capture

Gymnosperm

Angiosperm

References

  1. ^ Rieseberg. L. H. and Soltis, D. E. (1991) Phylogenetic consequences of cytoplasmic gene flow in plants Archived 2010-09-28 at the Wayback Machine. Evolutionary Trends in Plants 5: 65-84
  2. ^ Terry RG, Nowak RS, Tausch (2000) Genetic variation in chloroplast and nuclear ribosomal DNA in Utah juniper ( Juniperus osteosperma, Cupressaceae): evidence for interspecific gene flow. American Journal of Botany 87: 250-258
  3. ^ Matos, J. A. and B. A. Schaal. 2000. Chloroplast evolution in the Pinus montezumae complex: a coalescent approach to hybridization. Evolution 54: 1218–1233
  4. ^ Whittemore, A. T., Schaal, B. A. (1991) Interspecific gene flow in sympatric oaks. PNAS 88: 2540-2544
  5. ^ Ito, Y., T. Ohi-Toma, J. Murata, and Nr. Tanaka (2013) Comprehensive phylogenetic analyses of the Ruppia maritima complex focusing on taxa from the Mediterranean. Journal of Plant Research 126(6):753-62.
  6. ^ Soltis, D. E., P. S. Soltis, T. G. Collier, and M. L. Edgerton. 1991. Chloroplast DNA variation within and among genera of the Heuchera group: evidence for extensive chloroplast capture and the paraphyly of Heuchera and Mitella. American Journal of Botany 78: 1091–1112.