Aspartyl-tRNA synthetase, cytoplasmic is an enzyme that in humans is encoded by the DARSgene.[5][6]
Aspartyl-tRNA synthetase (DARS) is part of a multienzyme complex of aminoacyl-tRNA synthetases. Aspartyl-tRNA synthetase charges its cognate tRNA with aspartate during protein biosynthesis.[6]
Clinical significance
Mutations in DARS have been identified as the cause of leukoencephalopathy, hypomyelination with brain stem and spinal cord involvement and leg spasticity (HBSL).[7]
^"Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
^"Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
^Jacobo-Molina A, Peterson R, Yang DC (Oct 1989). "cDNA sequence, predicted primary structure, and evolving amphiphilic helix of human aspartyl-tRNA synthetase". J Biol Chem. 264 (28): 16608–12. PMID2674137.
Norcum MT (1991). "Structural analysis of the high molecular mass aminoacyl-tRNA synthetase complex. Effects of neutral salts and detergents". J. Biol. Chem. 266 (23): 15398–405. PMID1651330.
Reed VS, Wastney ME, Yang DC (1995). "Mechanisms of the transfer of aminoacyl-tRNA from aminoacyl-tRNA synthetase to the elongation factor 1 alpha". J. Biol. Chem. 269 (52): 32932–6. PMID7806521.
Maruyama K, Sugano S (1994). "Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides". Gene. 138 (1–2): 171–4. doi:10.1016/0378-1119(94)90802-8. PMID8125298.
Escalante C, Yang DC (1993). "Expression of human aspartyl-tRNA synthetase in Escherichia coli. Functional analysis of the N-terminal putative amphiphilic helix". J. Biol. Chem. 268 (8): 6014–23. PMID8449960.
Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, et al. (1997). "Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library". Gene. 200 (1–2): 149–56. doi:10.1016/S0378-1119(97)00411-3. PMID9373149.
Quevillon S, Robinson JC, Berthonneau E, et al. (1999). "Macromolecular assemblage of aminoacyl-tRNA synthetases: identification of protein-protein interactions and characterization of a core protein". J. Mol. Biol. 285 (1): 183–95. doi:10.1006/jmbi.1998.2316. PMID9878398.
Sang Lee J, Gyu Park S, Park H, et al. (2002). "Interaction network of human aminoacyl-tRNA synthetases and subunits of elongation factor 1 complex". Biochem. Biophys. Res. Commun. 291 (1): 158–64. doi:10.1006/bbrc.2002.6398. PMID11829477.
Cheong HK, Park JY, Kim EH, et al. (2004). "Structure of the N-terminal extension of human aspartyl-tRNA synthetase: implications for its biological function". Int. J. Biochem. Cell Biol. 35 (11): 1548–57. doi:10.1016/S1357-2725(03)00070-0. PMID12824064.
Bouwmeester T, Bauch A, Ruffner H, et al. (2004). "A physical and functional map of the human TNF-alpha/NF-kappa B signal transduction pathway". Nat. Cell Biol. 6 (2): 97–105. doi:10.1038/ncb1086. PMID14743216. S2CID11683986.
Bonnefond L, Fender A, Rudinger-Thirion J, et al. (2005). "Toward the full set of human mitochondrial aminoacyl-tRNA synthetases: characterization of AspRS and TyrRS". Biochemistry. 44 (12): 4805–16. doi:10.1021/bi047527z. PMID15779907.
Rual JF, Venkatesan K, Hao T, et al. (2005). "Towards a proteome-scale map of the human protein-protein interaction network". Nature. 437 (7062): 1173–8. doi:10.1038/nature04209. PMID16189514. S2CID4427026.