ARM Cortex-A73

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
ARM Cortex-A73
Designed by ARM Holdings
Max. CPU clock rate to 2.8 
Microarchitecture ARMv8-A
Cores 1–4 per cluster, multiple clusters
L1 cache 96–128 KiB (64 KiB I-cache with parity, 32–64 KiB D-cache) per core
L2 cache 1–8 MiB
L3 cache None
Predecessor ARM Cortex-A72
ARM Cortex-A17
Successor ARM Cortex-A75
Application Mobile
Product code name(s)
  • Artemis

The ARM Cortex-A73 is a microarchitecture implementing the ARMv8-A 64-bit instruction set designed by ARM Holdings. The Cortex-A73 is an out-of-order superscalar pipeline.[1]

Design[edit]

The Cortex-A73 serves as the successor of the Cortex-A72, designed to offer 30% greater performance or 30% increased power efficiency.[2] The design of the Cortex-A73 is based on the 32-bit ARMv7-A Cortex-A17, emphasizing power efficiency and sustained peak performance.[3] The Cortex-A73 is primarily targeted at mobile computing.[4] In reviews, the Cortex-A73 showed improved integer instructions per clock (IPC), though lower floating point IPC, relative to the Cortex-A72.[5]

Licensing[edit]

The Cortex-A73 is available as SIP core to licensees, and its design makes it suitable for integration with other SIP cores (e.g. GPU, display controller, DSP, image processor, etc.) into one die constituting a system on a chip (SoC).

The Cortex-A73 is also the first ARM core to be modified through ARM's semi-custom 'Built on ARM' license.[6][7] The Kryo 280 was the first released semi-custom product, though the modifications made relative to the stock Cortex-A73 were not announced.[5]

Products[edit]

The HiSilicon Kirin 960, released in 2016, utilizes 4 Cortex-A73 cores (clocked at 2.36 GHz) as the 'big' cores in a big.LITTLE arrangement with 4 'little' ARM Cortex-A53 cores.[8]

The MediaTek Helio X30 utilizes 2 Cortex-A73 cores (at 2.56 GHz) as the 'big' cores in deca-core big.LITTLE arrangement with 4 Cortex-A53 and 4 Cortex-A35 'little' cores.[9]

The Kryo 280, released in March 2017 by Qualcomm in the Snapdragon 835, uses a modified Cortex-A73 core.[5][10] The SoC utilizes 8 Kryo 280 cores in a big.LITTLE arrangement as two 4-core blocks, clocked at 2.456 GHz and 1.906 GHz. The modifications made by Qualcomm relative to the stock Cortex-A73 core are unknown, and the resulting Kryo 280 core demonstrated increased integer IPC.[5] The Kryo 260 also used Cortex-A73 cores, though at lower clock speeds than the Kryo 280 and in combination with Cortex-A53 cores.[11]

References[edit]

  1. ^ "Cortex-A73 Processor". ARM Holdings. Retrieved 2017-03-28. 
  2. ^ Cutress, Ian; Tallis, Billy (29 May 2016). "Computex 2016: ARM Press Conference Live Blog". Anandtech. Retrieved 29 March 2017. 
  3. ^ Frumusanu, Andrei (29 May 2016). "The ARM Cortex A73 - Artemis Revealed". Anandtech. Retrieved 29 March 2017. 
  4. ^ Sims, Gary (30 May 2016). "The Cortex-A73, a CPU that won't overheat – Gary explains". Android Authority. Retrieved 29 March 2017. 
  5. ^ a b c d Hummrick, Matt; Smith, Ryan (22 March 2017). "The Qualcomm Snapdragon 835 Performance Preview". Anandtech. Retrieved 22 March 2017. 
  6. ^ Frumusanu, Andrei (29 May 2016). "ARM Details Built on ARM Cortex Technology License". Anandtech. Retrieved 29 March 2017. 
  7. ^ Triggs, Robert (4 January 2017). "Qualcomm's Kryo 280 and 'Built on ARM Cortex Technology' explained". Android Authority. Retrieved 29 March 2017. 
  8. ^ "Huawei announces the HiSilicon Kirin 960: 4xA73 + 4xA53, G71MP8, CDMA". AnandTech. 2016-10-19. 
  9. ^ Humrick, Matt (27 February 2017). "MediaTek Announces Helio X30 availability: 10 CPU cores at 10nm". Anandtech. Retrieved 29 March 2017. 
  10. ^ "Get small, go big: Meet the next-gen Snapdragon 835". Qualcomm. 2016-11-17. 
  11. ^ "Snapdragon 660 Processor". Qualcomm.