ATPIF1

From Wikipedia, the free encyclopedia
Jump to: navigation, search
ATPIF1
Identifiers
Aliases ATPIF1, ATPI, ATPIP, IP, ATPase inhibitory factor 1
External IDs MGI: 1196457 HomoloGene: 40581 GeneCards: ATPIF1
Gene location (Human)
Chromosome 1 (human)
Chr. Chromosome 1 (human)[1]
Chromosome 1 (human)
Genomic location for ATPIF1
Genomic location for ATPIF1
Band 1p35.3 Start 28,236,109 bp[1]
End 28,246,906 bp[1]
RNA expression pattern
PBB GE ATPIF1 218671 s at fs.png
More reference expression data
Orthologs
Species Human Mouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_178191
NM_016311
NM_178190

NM_007512

RefSeq (protein)

NP_057395
NP_835497
NP_835498

NP_031538

Location (UCSC) Chr 1: 28.24 – 28.25 Mb Chr 1: 132.53 – 132.53 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

ATPase inhibitor, mitochondrial is an enzyme that in humans is encoded by the ATPIF1 gene.[5][6]

This gene encodes a mitochondrial ATPase inhibitor. Alternative splicing occurs at this locus and three transcript variants encoding distinct isoforms have been identified.[6]

It prevents ATPase from switching to ATP hydrolysis during collapse of the electrochemical gradient, for example during oxygen deprivation [7] ATP synthase inhibitor forms a one-to-one complex with the F1 ATPase, possibly by binding at the alpha-beta interface. It is thought to inhibit ATP synthesis by preventing the release of ATP.[8] The inhibitor has two oligomeric states, dimer (the active state) and tetramer. At low pH, the inhibitor forms a dimer via antiparallel coiled coil interactions between the C-terminal regions of two monomers. At high pH, the inhibitor forms tetramers and higher oligomers by coiled coil interactions involving the N terminus and inhibitory region, thus preventing the inhibitory activity.[7]

Model organisms[edit]

Model organisms have been used in the study of ATPIF1 function. A conditional knockout mouse line, called Atpif1tm1a(EUCOMM)Wtsi[15][16] was generated as part of the International Knockout Mouse Consortium program — a high-throughput mutagenesis project to generate and distribute animal models of disease to interested scientists.[17][18][19]

Male and female animals underwent a standardized phenotypic screen to determine the effects of deletion.[13][20] Twenty three tests were carried out on mutant mice and three significant abnormalities were observed.[13] Homozygous mutant animals displayed hyperactivity and brain dysmorphology, while males also had decreased circulating alkaline phosphatase levels.[13]

Mitochondrial ATPase inhibitor, IATP
PDB 1hf9 EBI.jpg
c-terminal coiled-coil domain from bovine if1
Identifiers
Symbol IATP
Pfam PF04568
InterPro IPR007648
SCOP 1hf9
SUPERFAMILY 1hf9

References[edit]

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000130770 - Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000054428 - Ensembl, May 2017
  3. ^ "Human PubMed Reference:". 
  4. ^ "Mouse PubMed Reference:". 
  5. ^ Ichikawa N, Ushida S, Kawabata M, Masazumi Y (Mar 2000). "Nucleotide sequence of cDNA coding the mitochondrial precursor protein of the ATPase inhibitor from humans". Biosci Biotechnol Biochem. 63 (12): 2225–2227. doi:10.1271/bbb.63.2225. PMID 10664857. 
  6. ^ a b "Entrez Gene: ATPIF1 ATPase inhibitory factor 1". 
  7. ^ a b Cabezon E, Butler PJ, Runswick MJ, Carbajo RJ, Walker JE (November 2002). "Homologous and heterologous inhibitory effects of ATPase inhibitor proteins on F-ATPases". J. Biol. Chem. 277 (44): 41334–41. doi:10.1074/jbc.M207169200. PMID 12186878. 
  8. ^ van Raaij MJ, Orriss GL, Montgomery MG, Runswick MJ, Fearnley IM, Skehel JM, Walker JE (December 1996). "The ATPase inhibitor protein from bovine heart mitochondria: the minimal inhibitory sequence". Biochemistry. 35 (49): 15618–25. doi:10.1021/bi960628f. PMID 8961923. 
  9. ^ "Anxiety data for Atpif1". Wellcome Trust Sanger Institute. 
  10. ^ "Clinical chemistry data for Atpif1". Wellcome Trust Sanger Institute. 
  11. ^ "Salmonella infection data for Atpif1". Wellcome Trust Sanger Institute. 
  12. ^ "Citrobacter infection data for Atpif1". Wellcome Trust Sanger Institute. 
  13. ^ a b c d Gerdin AK (2010). "The Sanger Mouse Genetics Programme: High throughput characterisation of knockout mice". Acta Ophthalmologica. 88: 925–7. doi:10.1111/j.1755-3768.2010.4142.x. 
  14. ^ Mouse Resources Portal, Wellcome Trust Sanger Institute.
  15. ^ "International Knockout Mouse Consortium". 
  16. ^ "Mouse Genome Informatics". 
  17. ^ Skarnes, W. C.; Rosen, B.; West, A. P.; Koutsourakis, M.; Bushell, W.; Iyer, V.; Mujica, A. O.; Thomas, M.; Harrow, J.; Cox, T.; Jackson, D.; Severin, J.; Biggs, P.; Fu, J.; Nefedov, M.; De Jong, P. J.; Stewart, A. F.; Bradley, A. (2011). "A conditional knockout resource for the genome-wide study of mouse gene function". Nature. 474 (7351): 337–342. doi:10.1038/nature10163. PMC 3572410Freely accessible. PMID 21677750. 
  18. ^ Dolgin E (2011). "Mouse library set to be knockout". Nature. 474 (7351): 262–3. doi:10.1038/474262a. PMID 21677718. 
  19. ^ Collins FS, Rossant J, Wurst W (2007). "A Mouse for All Reasons". Cell. 128 (1): 9–13. doi:10.1016/j.cell.2006.12.018. PMID 17218247. 
  20. ^ van der Weyden L, White JK, Adams DJ, Logan DW (2011). "The mouse genetics toolkit: revealing function and mechanism". Genome Biol. 12 (6): 224. doi:10.1186/gb-2011-12-6-224. PMC 3218837Freely accessible. PMID 21722353. 

External links[edit]

Further reading[edit]


This article incorporates text from the public domain Pfam and InterPro IPR007648