Abegg's rule

From Wikipedia, the free encyclopedia
Jump to: navigation, search

In chemistry, Abegg’s rule states that the difference between the maximum positive and negative valence of an element is frequently eight. The rule used a historic meaning of valence which resembles the modern concept of oxidation state in which an atom is an electron donor or receiver. Abegg’s rule is sometimes referred to as "Abegg’s law of valence and countervalence".

In general, for a given chemical element (as sulfur) Abegg’s rule states that the sum of the absolute value of its negative valence (such as −2 for sulfur in H2S) and its positive valence of maximum value (as +6 for sulfur in H2SO4) is often equal to 8.


The concept was formulated in 1904 by German chemist Richard Abegg.[1] Gilbert N. Lewis was one of the first to refer to the concept as "Abegg’s rule" when he used it as a basis of argument in Gilbert N. Lewis’ 1916 famous article "The Atom and the Molecule", to develop his cubical atom theory, which developed into the octet rule.[2] "The Atom and the Molecule" article helped inspire Linus Pauling to write the famous 1938 textbook The Nature of the Chemical Bond.[3]

See also[edit]


  1. ^ Abegg, R. (1904). "Die Valenz und das periodische System. Versuch einer Theorie der Molekularverbindungen (The valency and the periodical system - Attempt on a theory of molecular compound)". Zeitschrift für anorganische Chemie. 39 (1): 330–380. doi:10.1002/zaac.19040390125. 
  2. ^ Lewis, Gilbert N. (1916-04-01). "THE ATOM AND THE MOLECULE". Journal of the American Chemical Society. 38 (4): 762–785. doi:10.1021/ja02261a002. 
  3. ^ Pauling, Linus (June 1960). The Nature of the Chemical Bond and the Structure of Molecules and Crystals; An Introduction to Modern Structural Chemistry. (3 ed.). Cornell University Press. ISBN 0-8014-0333-2. 

External links[edit]