Abraham–Lorentz force

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search

In the physics of electromagnetism, the Abraham–Lorentz force (also Lorentz–Abraham force) is the recoil force on an accelerating charged particle caused by the particle emitting electromagnetic radiation. It is also called the radiation reaction force, radiation damping force[1] or the self-force.[2] It is named after the physicists Max Abraham and Hendrik Lorentz.

The formula predates the theory of special relativity and is not valid at velocities close to the speed of light. Its relativistic generalization is called the Abraham–Lorentz–Dirac force. Both of these are in the domain of classical physics, not quantum physics, and therefore may not be valid at distances of roughly the Compton wavelength or below.[3] There is, however, an analogue of the formula that is both fully quantum and relativistic, called the "Abraham–Lorentz–Dirac–Langevin equation".[4]

The force is proportional to the square of the object's charge, times the jerk (rate of change of acceleration) that it is experiencing. The force points in the direction of the jerk. For example, in a cyclotron, where the jerk points opposite to the velocity, the radiation reaction is directed opposite to the velocity of the particle, providing a braking action. The Abraham–Lorentz force is the source of the radiation resistance of a radio antenna radiating radio waves.

There are pathological solutions of the Abraham–Lorentz–Dirac equation in which a particle accelerates in advance of the application of a force, so-called pre-acceleration solutions. Since this would represent an effect occurring before its cause (retrocausality), some theories have speculated that the equation allows signals to travel backward in time, thus challenging the physical principle of causality. One resolution of this problem was discussed by Arthur D. Yaghjian[5] and is further discussed by Fritz Rohrlich[3] and Rodrigo Medina.[6]

Definition and description[edit]

Mathematically, the Abraham–Lorentz force is given in SI units by

or in Gaussian units by

Here Frad is the force, is the derivative of acceleration, or the third derivative of displacement, also called jerk, μ0 is the magnetic constant, ε0 is the electric constant, c is the speed of light in free space, and q is the electric charge of the particle.

Note that this formula is for non-relativistic velocities; Dirac simply renormalized the mass of the particle in the equation of motion, to find the relativistic version (below).

Physically, an accelerating charge emits radiation (according to the Larmor formula), which carries momentum away from the charge. Since momentum is conserved, the charge is pushed in the direction opposite the direction of the emitted radiation. In fact the formula above for radiation force can be derived from the Larmor formula, as shown below.


In classical electrodynamics, problems are typically divided into two classes:

  1. Problems in which the charge and current sources of fields are specified and the fields are calculated, and
  2. The reverse situation, problems in which the fields are specified and the motion of particles are calculated.

In some fields of physics, such as plasma physics and the calculation of transport coefficients (conductivity, diffusivity, etc.), the fields generated by the sources and the motion of the sources are solved self-consistently. In such cases, however, the motion of a selected source is calculated in response to fields generated by all other sources. Rarely is the motion of a particle (source) due to the fields generated by that same particle calculated. The reason for this is twofold:

  1. Neglect of the "self-fields" usually leads to answers that are accurate enough for many applications, and
  2. Inclusion of self-fields leads to problems in physics such as renormalization, some of which are still unsolved, that relate to the very nature of matter and energy.

These conceptual problems created by self-fields are highlighted in a standard graduate text. [Jackson]

The difficulties presented by this problem touch one of the most fundamental aspects of physics, the nature of the elementary particle. Although partial solutions, workable within limited areas, can be given, the basic problem remains unsolved. One might hope that the transition from classical to quantum-mechanical treatments would remove the difficulties. While there is still hope that this may eventually occur, the present quantum-mechanical discussions are beset with even more elaborate troubles than the classical ones. It is one of the triumphs of comparatively recent years (~ 1948–1950) that the concepts of Lorentz covariance and gauge invariance were exploited sufficiently cleverly to circumvent these difficulties in quantum electrodynamics and so allow the calculation of very small radiative effects to extremely high precision, in full agreement with experiment. From a fundamental point of view, however, the difficulties remain.

The Abraham–Lorentz force is the result of the most fundamental calculation of the effect of self-generated fields. It arises from the observation that accelerating charges emit radiation. The Abraham–Lorentz force is the average force that an accelerating charged particle feels in the recoil from the emission of radiation. The introduction of quantum effects leads one to quantum electrodynamics. The self-fields in quantum electrodynamics generate a finite number of infinities in the calculations that can be removed by the process of renormalization. This has led to a theory that is able to make the most accurate predictions that humans have made to date. (See precision tests of QED.) The renormalization process fails, however, when applied to the gravitational force. The infinities in that case are infinite in number, which causes the failure of renormalization. Therefore, general relativity has an unsolved self-field problem. String theory and loop quantum gravity are current attempts to resolve this problem, formally called the problem of radiation reaction or the problem of self-force.


The simplest derivation for the self-force is found for periodic motion from the Larmor formula for the power radiated from a point charge:


If we assume the motion of a charged particle is periodic, then the average work done on the particle by the Abraham–Lorentz force is the negative of the Larmor power integrated over one period from to :


The above expression can be integrated by parts. If we assume that there is periodic motion, the boundary term in the integral by parts disappears:


Clearly, we can identify


A more rigorous derivation, which does not require periodic motion, was found using an effective field theory formulation.[7][8] An alternative derivation, finding the fully relativistic expression, was found by Dirac.[citation needed]

Signals from the future[edit]

Below is an illustration of how a classical analysis can lead to surprising results. The classical theory can be seen to challenge standard pictures of causality, thus signaling either a breakdown or a need for extension of the theory. In this case the extension is to quantum mechanics and its relativistic counterpart quantum field theory. See the quote from Rohrlich [3] in the introduction concerning "the importance of obeying the validity limits of a physical theory".

For a particle in an external force , we have


This equation can be integrated once to obtain

The integral extends from the present to infinitely far in the future. Thus future values of the force affect the acceleration of the particle in the present. The future values are weighted by the factor

which falls off rapidly for times greater than in the future. Therefore, signals from an interval approximately into the future affect the acceleration in the present. For an electron, this time is approximately sec, which is the time it takes for a light wave to travel across the "size" of an electron, the classical electron radius. One way to define this "size" is as follows: it is (up to some constant factor) the distance such that two electrons placed at rest at a distance apart and allowed to fly apart, would have sufficient energy to reach half the speed of light. In other words, it forms the length (or time, or energy) scale where something as light as an electron would be fully relativistic. It is worth noting that this expression does not involve the Planck constant at all, so although it indicates something is wrong at this length scale, it does not directly relate to quantum uncertainty, or to the frequency–energy relation of a photon. Although it is common in quantum mechanics to treat as a "classical limit", some[who?] speculate that even the classical theory needs renormalization, no matter how the Planck constant would be fixed.

Abraham–Lorentz–Dirac force[edit]

To find the relativistic generalization, Dirac renormalized the mass in the equation of motion with the Abraham–Lorentz force in 1938. This renormalized equation of motion is called the Abraham–Lorentz–Dirac equation of motion.[9][10]


The expression derived by Dirac is given in signature (−, +, +, +) by

With Liénard's relativistic generalization of Larmor's formula in the co-moving frame,

one can show this to be a valid force by manipulating the time average equation for power:


Similar to the non-relativistic case, there are pathological solutions using the Abraham–Lorentz–Dirac equation that anticipate a change in the external force and according to which the particle accelerates in advance of the application of a force, so-called preacceleration solutions. One resolution of this problem was discussed by Yaghjian,[5] and is further discussed by Rohrlich[3] and Medina.[6]


However the antidamping mechanism resulting from the Abraham–Lorentz force can be compensated by other nonlinear terms, which are frequently disregarded in the expansions of the retarded Liénard–Wiechert potential.[3]

Experimental observations[edit]

While the Abraham–Lorentz force is largely neglected for many experimental considerations, it gains importance for plasmonic excitations in larger nanoparticles due to large local field enhancements. Radiation damping acts as a limiting factor for the plasmonic excitations in surface-enhanced Raman scattering.[11] The damping force was shown to broaden surface plasmon resonances in gold nanoparticles, nanorods and clusters.[12][13][14]

The effects of radiation damping on nuclear magnetic resonance were also observed by Nicolaas Bloembergen and Robert Pound, who reported its dominance over spin–spin and spin–lattice relaxation mechanisms for certain cases.[15]

The Abraham-Lorentz force has been observed in the semiclassical regime in experiments which involve the scattering of a relativistic beam of electrons with a high intensity laser.[16][17] In the experiments, a supersonic jet of helium gas is intercepted by a high-intensity (1018-1020 W/cm2) laser. The laser ionizes the helium gas and accelerates the electrons via what is known as the “laser-wakefield” effect. A second high-intensity laser beam is then propagated counter to this accelerated electron beam. In a small number of cases, inverse-Compton scattering occurs between the photons and the electron beam, and the spectra of the scattered electrons and photons are measured. The photon spectra are then compared with spectra calculated from Monte Carlo simulations that use either the QED or classical LL equations of motion.  

See also[edit]


  1. ^ Griffiths, David J. (1998). Introduction to Electrodynamics (3rd ed.). Prentice Hall. ISBN 978-0-13-805326-0.
  2. ^ Rohrlich, Fritz (2000). "The self-force and radiation reaction". American Journal of Physics. 68 (12): 1109–1112. Bibcode:2000AmJPh..68.1109R. doi:10.1119/1.1286430.
  3. ^ a b c d e Fritz Rohrlich: The dynamics of a charged sphere and the electron, Am. J. Phys. 65 (11) p. 1051 (1997). "The dynamics of point charges is an excellent example of the importance of obeying the validity limits of a physical theory. When these limits are exceeded the predictions of the theory may be incorrect or even patently absurd. In the present case, the classical equations of motion have their validity limits where quantum mechanics becomes important: they can no longer be trusted at distances of the order of (or below) the Compton wavelength… Only when all distances involved are in the classical domain is classical dynamics acceptable for electrons."
  4. ^ P. R. Johnson, B. L. Hu (2002). "Stochastic theory of relativistic particles moving in a quantum field: Scalar Abraham–Lorentz–Dirac–Langevin equation, radiation reaction, and vacuum fluctuations". Physical Review D. 65 (6): 065015. arXiv:quant-ph/0101001. Bibcode:2002PhRvD..65f5015J. doi:10.1103/PhysRevD.65.065015. S2CID 102339497.
  5. ^ a b Yaghjian, Arthur D. (2006). Relativistic Dynamics of a Charged Sphere: Updating the Lorentz–Abraham Model. Lecture Notes in Physics. 686 (2nd ed.). New York: Springer. Chapter 8. ISBN 978-0-387-26021-1.
  6. ^ a b Rodrigo Medina (2006). "Radiation reaction of a classical quasi-rigid extended particle". Journal of Physics A: Mathematical and General. 39 (14): 3801–3816. arXiv:physics/0508031. Bibcode:2006JPhA...39.3801M. doi:10.1088/0305-4470/39/14/021. S2CID 15040854.
  7. ^ Birnholtz, Ofek; Hadar, Shahar; Kol, Barak (2014). "Radiation reaction at the level of the action". International Journal of Modern Physics A. 29 (24): 1450132–90. arXiv:1402.2610. Bibcode:2014IJMPA..2950132B. doi:10.1142/S0217751X14501322. S2CID 118541484.
  8. ^ Birnholtz, Ofek; Hadar, Shahar; Kol, Barak (2013). "Theory of post-Newtonian radiation and reaction". Physical Review D. 88 (10): 104037. arXiv:1305.6930. Bibcode:2013PhRvD..88j4037B. doi:10.1103/PhysRevD.88.104037. S2CID 119170985.
  9. ^ Dirac, P. A. M. (1938). "Classical Theory of Radiating Electrons". Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences. 167 (929): 148–169. Bibcode:1938RSPSA.167..148D. doi:10.1098/rspa.1938.0124. JSTOR 97128.
  10. ^ Ilderton, Anton; Torgrimsson, Greger (2013-07-12). "Radiation reaction from QED: Lightfront perturbation theory in a plane wave background". Physical Review D. 88 (2): 025021. arXiv:1304.6842. doi:10.1103/PhysRevD.88.025021.
  11. ^ Wokaun, A.; Gordon, J. P.; Liao, P. F. (5 April 1952). "Radiation Damping in Surface-Enhanced Raman Scattering". Physical Review Letters. 48 (14): 957–960. doi:10.1103/PhysRevLett.48.957.
  12. ^ Sönnichsen, C.; et al. (February 2002). "Drastic Reduction of Plasmon Damping in Gold Nanorods". Physical Review Letters. 88 (7): 077402. doi:10.1103/PhysRevLett.88.077402. PMID 11863939.
  13. ^ Carolina, Novo; et al. (2006). "Contributions from radiation damping and surface scattering to the linewidth of the longitudinal plasmon band of gold nanorods: a single particle study". Physical Chemistry Chemical Physics. 8 (30): 3540–3546. doi:10.1039/b604856k. PMID 16871343.
  14. ^ Sönnichsen, C.; et al. (2002). "Plasmon resonances in large noble-metal clusters". New Journal of Physics. 4: 93.1–93.8. doi:10.1088/1367-2630/4/1/393.
  15. ^ Bloembergen, N.; Pound, R. V. (July 1954). "Radiation Damying in Magnetic Resonance Exyeriments" (PDF). Physical Review. 95 (1): 8–12. doi:10.1103/PhysRev.95.8.
  16. ^ Cole, J. M.; Behm, K. T.; Gerstmayr, E.; Blackburn, T. G.; Wood, J. C.; Baird, C. D.; Duff, M. J.; Harvey, C.; Ilderton, A.; Joglekar, A. S.; Krushelnick, K. (2018-02-07). "Experimental Evidence of Radiation Reaction in the Collision of a High-Intensity Laser Pulse with a Laser-Wakefield Accelerated Electron Beam". Physical Review X. 8 (1): 011020. doi:10.1103/PhysRevX.8.011020. hdl:10044/1/55804. S2CID 3779660.
  17. ^ Poder, K.; Tamburini, M.; Sarri, G.; Di Piazza, A.; Kuschel, S.; Baird, C. D.; Behm, K.; Bohlen, S.; Cole, J. M.; Corvan, D. J.; Duff, M. (2018-07-05). "Experimental signatures of the quantum nature of radiation reaction in the field of an ultra-intense laser". Physical Review X. 8 (3): 031004. arXiv:1709.01861. doi:10.1103/PhysRevX.8.031004. hdl:10044/1/73880. ISSN 2160-3308.

Further reading[edit]

External links[edit]