Acaryochloris marina

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Acaryochloris marina
Scientific classification
Kingdom: Bacteria
Phylum: Cyanobacteria
Order: Synechococcales
Family: Acaryochloridaceae
Komárek et al. 2014[1]
Genus: Acaryochloris
Miyashita & Chihara 2003[2]
Species: A. marina
Binomial name
Acaryochloris marina
Miyashita & Chihara, 2003[2]
Chlorophyll d

Acaryochloris marina is a symbiotic species of the phylum Cyanobacteria that produces chlorophyll d, allowing it to use far-red light, at 710 nm wavelength.[3]

Description[edit]

It was first discovered in 1993 from coastal isolates of coral in the Republic of Palau in the west Pacific Ocean and announced in 1996.[4] Despite the claim in the 1996 Nature paper that its formal description was to be published shortly thereafter,[4] a tentative partial description was presented in 2003 due to phylogenetic issues (deep branching cyanobacterium).[2]

Genome[edit]

Its genome was sequenced in 2008, revealing a large bacterial genome of 8.3 Mb with nine plasmids.[3]

Etymology[edit]

The name Acaryochloris is a combination of the Greek prefix a (ἄν)[5] meaning "without", caryo (κάρυον)[6] meaning "nut" (here intended as "nucleus") and chloros (χλωρός)[7] meaning green;[8] therefore it is Neolatin Acaryochloris meaning "without nucleus green".[2] The specific epithet marina is Latin meaning "marine".[2]

Classification[edit]

Due to historical reason, the classification of the Cyanobacteria is problematic and many are not validly published, meaning they have not yet been placed into the classification framework.[9] One of these not officially recognised species is Acaryochloris marina, which technically should be written as "Acaryochloris marina" in official writings, but in effect this is rarely done (cf.[3][10])

Exoplanet habitability[edit]

Scientists including NASA's Nancy Kiang have proposed that the existence of Acaryochloris marina suggests that organisms that use chlorophyll d, rather than chlorophyll a, may be able to perform oxygenic photosynthesis on exoplanets orbiting red dwarf stars (which emit much less light than the Sun).[11][12] Because about 70% of the stars in the Milky Way galaxy are red dwarfs,[13] the existence of A. marina implies that oxygenic photosynthesis may be occurring on far more exoplanets than astrobiologists initially thought possible.

See also[edit]

References[edit]

  1. ^ Komárek J, Kaštovský J, Mareš J, Johansen JR (2014). "Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach" (PDF). Preslia. 86: 295–335. 
  2. ^ a b c d e Miyashita, H.; Ikemoto, H.; Kurano, N.; Miyachi, S.; Chihara, M. (2003). "Acaryochloris Marina Gen. Et Sp. Nov. (Cyanobacteria), an Oxygenic Photosynthetic Prokaryote Containing Chl D As a Major Pigment1". Journal of Phycology. 39 (6): 1247–1253. doi:10.1111/j.0022-3646.2003.03-158.x. 
  3. ^ a b c Swingley, W. D.; Chen, M.; Cheung, P. C.; Conrad, A. L.; Dejesa, L. C.; Hao, J.; Honchak, B. M.; Karbach, L. E.; Kurdoglu, A.; Lahiri, S.; Mastrian, S. D.; Miyashita, H.; Page, L.; Ramakrishna, P.; Satoh, S.; Sattley, W. M.; Shimada, Y.; Taylor, H. L.; Tomo, T.; Tsuchiya, T.; Wang, Z. T.; Raymond, J.; Mimuro, M.; Blankenship, R. E.; Touchman, J. W. (2008). "Niche adaptation and genome expansion in the chlorophyll d-producing cyanobacterium Acaryochloris marina". Proceedings of the National Academy of Sciences. 105 (6): 2005–2010. PMC 2538872Freely accessible. PMID 18252824. doi:10.1073/pnas.0709772105. 
  4. ^ a b H. Miyashita, H. Ikemoto, N. Kurano, K. Adachi, M. Chihara and S. Miyachi (1996). "Chlorophyll d as a major pigment". Nature. 383 (6599): 402. doi:10.1038/383402a0. 
  5. ^ ἄν. Liddell, Henry George; Scott, Robert; A Greek–English Lexicon at the Perseus Project
  6. ^ κάρυον. Liddell, Henry George; Scott, Robert; A Greek–English Lexicon at the Perseus Project
  7. ^ χλωρός. Liddell, Henry George; Scott, Robert; A Greek–English Lexicon at the Perseus Project
  8. ^ Gender of suffices entry in LPSN [Euzéby, J.P. (1997). "List of Bacterial Names with Standing in Nomenclature: a folder available on the Internet". Int J Syst Bacteriol. 47 (2): 590–2. ISSN 0020-7713. PMID 9103655. doi:10.1099/00207713-47-2-590. ]
  9. ^ Classification of Cyanobacteria entry in LPSN [Euzéby, J.P. (1997). "List of Bacterial Names with Standing in Nomenclature: a folder available on the Internet". Int J Syst Bacteriol. 47 (2): 590–2. ISSN 0020-7713. PMID 9103655. doi:10.1099/00207713-47-2-590. ]
  10. ^ Kühl, M.; Chen, M.; Ralph, P. J.; Schreiber, U.; Larkum, A. W. D. (2005). "Ecology: A niche for cyanobacteria containing chlorophyll d". Nature. 433 (7028): 820–820. PMID 15729331. doi:10.1038/433820a. 
  11. ^ Gronstal, Aaron (February 2012). "Far-Out Photosynthesis". News & Features. NASA. Retrieved 26 January 2014. 
  12. ^ Mielke, S.P., N.Y. Kiang, R.E. Blankenship, M.R. Gunner, and D. Mauzerall (2011). "Efficiency of photosynthesis in a Chl d-utilizing cyanobacterium is comparable to or higher than that in Chl a-utilizing oxygenic species". BBA Bioenergetics. 1807 (9): 1231–1236. doi:10.1016/j.bbabio.2011.06.007. 
  13. ^ "Colorful Dwarfs". StarDate. The University of Texas McDonald Observatory. Retrieved 23 January 2014.