Adiabatic quantum computation

From Wikipedia, the free encyclopedia
Jump to: navigation, search

Adiabatic quantum computation (AQC) relies on the adiabatic theorem to do calculations[1] and is closely related to, and may be regarded as a subclass of, quantum annealing.[2][3][4][5] First, a (potentially complicated) Hamiltonian is found whose ground state describes the solution to the problem of interest. Next, a system with a simple Hamiltonian is prepared and initialized to the ground state. Finally, the simple Hamiltonian is adiabatically evolved to the desired complicated Hamiltonian. By the adiabatic theorem, the system remains in the ground state, so at the end the state of the system describes the solution to the problem. Adiabatic Quantum Computing has been shown to be polynomially equivalent to conventional quantum computing in the circuit model.[6] The time complexity for an adiabatic algorithm is the time taken to complete the adiabatic evolution which is dependent on the gap in the energy eigenvalues (spectral gap) of the Hamiltonian. Specifically, if the system is to be kept in the ground state, the energy gap between the ground state and the first excited state of H(t) provides an upper bound on the rate at which the Hamiltonian can be evolved at time t.[7] When the spectral gap is small, the Hamiltonian has to be evolved slowly. The runtime for the entire algorithm can be bounded by T = O\left(\frac{1}{g_{min}^2}\right) Where g_{min} is the minimum spectral gap for H(t).

AQC is a possible method to get around the problem of energy relaxation. Since the quantum system is in the ground state, interference with the outside world cannot make it move to a lower state. If the energy of the outside world (that is, the "temperature of the bath") is kept lower than the energy gap between the ground state and the next higher energy state, the system has a proportionally lower probability of going to a higher energy state. Thus the system can stay in a single system eigenstate as long as needed.

Universality results in the adiabatic model are tied to quantum complexity and QMA-hard problems. The k-local Hamiltonian is QMA-complete for k ≥ 2.[8] QMA-hardness results are known for physically realistic lattice models of qubits such as [9] 
H = \sum_{i}h_i Z_i + \sum_{i<j}J^{ij}Z_iZ_i + \sum_{i<j}K^{ij}X_iX_i
where Z, X represent the Pauli matrices \sigma_z, \sigma_x. Such models are used for universal adiabatic quantum computation. The Hamiltonians for the QMA-complete problem can also be restricted to act on a two dimensional grid of qubits[10] or a line of quantum particles with 12 states per particle.[11] and if such models were found to be physically realisable, they too could be used to form the building blocks of a universal adiabatic quantum computer.

In practice, there are problems during a computation. As the Hamiltonian is gradually changed, the interesting parts (quantum behaviour as opposed to classical) occur when multiple qubits are close to a tipping point. It is exactly at this point when the ground state (one set of qubit orientations) gets very close to a first energy state (a different arrangement of orientations). Adding a slight amount of energy (from the external bath, or as a result of slowly changing the Hamiltonian) could take the system out of the ground state, and ruin the calculation. Trying to perform the calculation more quickly increases the external energy; scaling the number of qubits makes the energy gap at the tipping points smaller.

Adiabatic quantum computation in satisfiability problems[edit]

Adiabatic quantum computation solves satisfiability problems and other combinatorial search problems by the process below. Generally this kind of problem is to seek for a state that satisfies 
	C_1 \wedge C_2 \wedge \cdots \wedge C_M
. This expression contains the satisfiability of M clauses, each clause C_i has the value True or False, and can involve n bits. Each bit here is a variable x_j\in \{ 0,1\} so C_i is a Boolean value function of x_1, x_2, \dots , x_n. QAA solves this kind of problem using quantum adiabatic evolution. It starts with an Initial Hamiltonian H_B:


	H_B=H_{B_1}+H_{B_2}+\dots+H_{B_M}

where H_{B_i} shows the Hamiltonian corresponding to the clause C_i, usually the choice of H_{B_i} won't depend on different clauses, so only the total number of times each bit involved in all clauses matters. Then it goes through an adiabatic evolution, ending in the Problem Hamiltonian H_P:


	H_P=\sum\limits_{C}^{} H_{P,C}

where H_{P,C} is the satisfying Hamiltonian of clause C. It has eigenvalues:


	h_C(z_{1C},z_{2C}\dots z_{nC})=
	\begin{cases} 
	0 & clause\ C\ satisfied \\ 
	1 & clause\ C\ violated
	\end{cases}

For a simple path of Adiabatic Evolution with running time T, consider: 
	H(t)=(1-t/T)H_{B}+(t/T)H_{P}
and let s=t/T, we have: 
	\tilde{H}(s)=(1-s)H_{B}+sH_{P}
, which is the adiabatic evolution Hamiltonian of our algorithm.

According to the adiabatic theorem, we start from the ground state of Hamiltonian H_B at beginning, go through an adiabatic process, and at last ending in the ground state of problem Hamiltonian H_P. Then we measure the z-component of each of the n spins in the final state, this will produce a string z_1,z_2,\dots,z_n which is highly likely to be the result of our satisfiability problem. Here the running time T must be sufficiently long to assure the correctness of result, and according to adiabatic theorem, T is about \varepsilon/g_{min}^{2}, where 
	g_{min}=\min_{0\le s\le 1}(E_1(s)-E_0(s))
is the minimum energy gap between ground state and first excited state.[12]

D-Wave quantum processors[edit]

The D-Wave One is a device made by a Canadian company D-Wave Systems which describes it as doing quantum annealing.[13] In 2011, Lockheed-Martin purchased one for about US$10 million; in May 2013, Google purchased a D-Wave Two with 512 qubits.[14] As of now, the question of whether the D-Wave processors offer a speedup over a classical processor is still unanswered. Tests performed by researchers at USC, ETH Zurich, and Google show that as of now, there is no evidence of a quantum advantage.[15][16]

Notes[edit]

  1. ^ Farhi, E.; Goldstone, J.; Gutmann, S.; Sipser, M. (2000). "Quantum Computation by Adiabatic Evolution". arXiv:quant-ph/0001106v1. 
  2. ^ Kadowaki, T.; Nishimori, H. (1998-11-01). "Quantum annealing in the transverse Ising model". Physical Review E 58: 5355. arXiv:cond-mat/9804280. Bibcode:1998PhRvE..58.5355K. doi:10.1103/PhysRevE.58.5355. 
  3. ^ Finilla, A.B.; Gomez, M.A.; Sebenik, C.; Doll, D.J. (1994-03-18). "Quantum annealing: A new method for minimizing multidimensional functions". Chemical Physics Letters 219 (5): 343–348. Bibcode:1994CPL...219..343F. doi:10.1016/0009-2614(94)00117-0. 
  4. ^ Santoro, G.E.; Tosatti, E. (2006-09-08). "Optimization using quantum mechanics: quantum annealing through adiabatic evolution". Journal of Physics A 39 (36): R393. Bibcode:2006JPhA...39R.393S. doi:10.1088/0305-4470/39/36/R01. 
  5. ^ Das, A.; Chakrabarti, B.K. (2008-09-05). "Colloquium: Quantum annealing and analog quantum computation". Reviews of Modern Physics 80: 1061. arXiv:0801.2193. Bibcode:2008RvMP...80.1061D. doi:10.1103/RevModPhys.80.1061. 
  6. ^ Aharonov, Dorit; van Dam, Wim; Kempe, Julia; Landau, Zeph; LLoyd, Seth (2007-04-01). "Adiabatic Quantum Computation is Equivalent to Standard Quantum Computation". SIAM Journal on Computing 37: 166. 
  7. ^ van Dam, Wim; van Mosca, Michele; Vazirani, Umesh. "How Powerful is Adiabatic Quantum Computation?". Proceedings of the 42nd Annual Symposium on Foundations of Computer Science: 279. 
  8. ^ Kempe, J.; Kitaev, A.; Regev, O. (2006-07-27). "The Complexity of the Local Hamiltonian Problem". SIAM Journal on Computing (Philadelphia: Society for Industrial and Applied Mathematics) 35 (5): 1070–1097. arXiv:quant-ph/0406180v2. doi:10.1137/S0097539704445226. ISSN 1095-7111. 
  9. ^ Biamonte, J.D.; Love, P.J. (2008-07-28). "Realizable Hamiltonians for Universal Adiabatic Quantum Computers". Physical Review A (Physical Review) 78 (1): 012352. arXiv:0704.1287. Bibcode:2008PhRvA..78a2352B. doi:10.1103/PhysRevA.78.012352. 
  10. ^ Oliveira, R.; Terhal, B.M. (2008-11-01). "The complexity of quantum spin systems on a two-dimensional square lattice". Quantum Information & Computation 8 (10): 0900–0924. arXiv:quant-ph/0504050. Bibcode:2005quant.ph..4050O. 
  11. ^ Aharonov, D.; Gottesman, D.; Irani, S.; Kempe, J. (2009-04-01). "The Power of Quantum Systems on a Line". Communications in Mathematical Physics 287 (1): 41–65. arXiv:0705.4077. Bibcode:2009CMaPh.287...41A. doi:10.1007/s00220-008-0710-3. 
  12. ^ Farhi, Edward; Goldstone, Jeffrey; Gutmann, Sam; Sipser, Michael (2000-01-28). "Quantum Computation by Adiabatic Evolution". arXiv:quant-ph/0001106. 
  13. ^ "Quantum Computing: How D-Wave Systems Work". D-Wave. D-Wave Systems, Inc. Archived from the original on 2014-09-14. Retrieved 2014-08-28. 
  14. ^ Jones, Nicola (2013-06-20). "Computing: The quantum company". Nature (Nature Publishing Group) 498: 286–288. Bibcode:2013Natur.498..286J. doi:10.1038/498286a. Archived from the original on 2014-01-03. Retrieved 2014-01-02. 
  15. ^ Boixo, S.; Rønnow, T.F.; Isakov, S.V.; Wang, Z.; Wecker, D.; Lidar, D.A.; Martinis, J.M.; Troyer, M. (2014-02-28). "Evidence for quantum annealing with more than one hundred qubits". Nature Physics 10: 218–224. arXiv:1304.4595. Bibcode:2014NatPh..10..218B. doi:10.1038/nphys2900. 
  16. ^ Ronnow, T.F.; Wang, Z.; Job, J.; Boixo, S.; Isakov, S.V.; Wecker, D.; Martinis, J.M.; Lidar, D.A.; Troyer, M. (2014-01-13). "Defining and detecting quantum speedup". arXiv:1401.2910.