Advanced superionic conductor

From Wikipedia, the free encyclopedia
Jump to: navigation, search

The term advanced superionic conductors (AdSIC) was first introduced in a paper by A.L. Despotuli, A.V. Andreeva and B. Rambaby.[1]

AdSICs are fast ion conductors that have a crystal structure close to optimal for fast ion transport (FIT). The rigid ion sublattice of AdSIC has structure channels where mobile ions of opposite sign migrate. The ion-transport characteristics of AdSICs are very high, ionic conductivity, ~0.3/Ω cm (RbAg4I5, 300 K) and activation energy Ei~0.1 eV. This determines the temperature-dependent concentration of mobile ions ni~Ni x eEi/kBT capable to migrate in conduction channels at each moment (Ni~1022/cm3, ni~2x1020/cm3, 300 K).

Rubidium silver iodide –family is a group of the AdSICs compounds and solid solutions which are isostructural with the RbAg4I5 alpha modification. The examples of such compounds with mobile Ag+- and Cu+-cations are: KAg4I5, NH4Ag4I5, K1-xCsxAg4I5, Rb1-xCsxAg4I5, CsAg4Br1-xI2+x, CsAg4ClBr2I2, CsAg4Cl3I2, RbCu4Cl3I2, KCu4I5 and others [3-8].

For the RbAg4I5 AdSIC the peculiar features of crystal structure and dynamics of mobile ions were studied in [9,10]

Recently, all solid state micrometre-sized supercapacitors based on AdSICs (nanoionic supercapacitors) had been recognized as critical electron component of future sub-voltage and deep-sub-voltage nanoelectronics and related technologies (22 nm technological node of CMOS and beyond).[2]


  1. ^ Despotuli, Andreeva and Rambaby (June 7, 2006). "Nanoionics of advanced superionic conductors" (portable document format abstract only). Ionics. Berlin/Heidelberg: Springer. 11 (3–4): 306–314. doi:10.1007/BF02430394. Retrieved 2007-11-02. 
  2. ^ Александр Деспотули, Александра Андреева (2007). Высокоёмкие конденсаторы для 0,5 вольтовой наноэлектроники будущего (Portable Document Format). Современная Электроника (in Russian) (7): 24–29. Retrieved 2007-11-02.  Alexander Despotuli, Alexandra Andreeva (2007). "High-capacity capacitors for 0.5 voltage nanoelectronics of the future" (Portable Document Format). Modern Electronics (7): 24–29. Retrieved 2007-11-02. 

[3] Geller S. Crystal Structure of the Solid Electrolyte, RbAg4I5 // Science 1967. V. 157. no. 3786. P. 310 – 312.

[4] Geller S., Akridge J.R., Wilber S.A. Crystal structure and conductivity of the solid electrolyte α-RbCu4Cl3I2 // Phys. Rev. B 1979. V.19. P. 5396 – 5402.

[5] Hull S. Keen D.A., Sivia D.S., Berastegui P. Crystal Structures and Ionic Conductivities of Ternary Derivatives of the Silver and Copper Monohalides - I. Superionic Phases of Stoichiometry MAg4I5: RbAg4I5, KAg4I5, and KCu4I5 // J.Solid State Chemistry 2002. V. 165. P. 363-371.

[6] Despotuli A.L., Zagorodnev V.N., Lichkova N.V., Minenkova N.A. New high conductive CsAg4Br1-xI2+x (0.25 < x <1) solid electrolytes // Sov. Phys. Solid State 1989. V.31. P. 242-244.

[7] Lichkova N.V., Despotuli A.L., Zagorodnev V.N., Minenkova N.A., Shahlevich K.V. Ionic conductivity of solid electrolytes in the two- and three-components AgX –CsX (X = Cl, Br, I) glass-forming systems // Sov. Electrochem. 1989. V.25. P.1636-1640.

[8] Studenyak I.P., Kranjčec M., Bilanchuk V.V., Kokhan O.P, Orliukas A.F., Kezionis A., Kazakevicius E., Salkus T. Temperature variation of electrical conductivity and absorption edge in Cu7GeSe5I advanced superionic conductor // Journal of Physics and Chemistry of Solids 2009. V.70. Issue 12. P.1478-1481.

[9] Funke K., Banhatti R.D., Wilmer D., Dinnebier R., Fitch A., Jansen M. Low-temperature phases of rubidium silver iodide: crystal structures and dynamics of the mobile silver ions // J. Phys. Chem. A 2006. V.110, P.3010-3016.

[10] Chang J.-H., Zurn A., Schnering H. G. Hyperbolic cation diffusion paths in alpha-RbAg4I5 type superionic conductors // Zeitschrift für Anorganische und Allgemeine Chemie 2008. V.634. Issue 12-13. P.2156 - 2160.