Advanced superionic conductor

From Wikipedia, the free encyclopedia
  (Redirected from Advanced superionic conductors)
Jump to: navigation, search

An advanced superionic conductor (AdSIC) is fast ion conductor that has a crystal structure close to optimal for fast ion transport (FIT).


The term was introduced in a paper by A.L. Despotuli, A.V. Andreeva and B. Rambaby.[1]


The rigid ion sublattice of AdSICs have structure channels where mobile ions of opposite sign migrate. Their ion-transport characteristics display ionic conductivity of ~0.3/Ω cm (RbAg4I5, 300 K) and activation energy of Ei~0.1 eV. This determines the temperature-dependent concentration of mobile ions ni~Ni x eEi/kBT capable to migrate in conduction channels at each moment (Ni~1022/cm3, ni~2x1020/cm3, 300 K).

The Rubidium silver iodide–family is a group of AdSIC compounds and solid solutions that are isostructural with the RbAg4I5 alpha modification. Examples of such compounds with mobile Ag+- and Cu+-cations include KAg4I5, NH4Ag4I5, K1−xCsxAg4I5, Rb1−xCsxAg4I5, CsAg4Br1−xI2+x, CsAg4ClBr2I2, CsAg4Cl3I2, RbCu4Cl3I2 and KCu4I5.[2][3][4][5][6][7]

RbAg4I5 AdSIC displays peculiar features of crystal structure and dynamics of mobile ions.[8][9]

Recently, all solid state micrometre-sized supercapacitors based on AdSICs (nanoionic supercapacitors) had been recognized as critical electron component of future sub-voltage and deep-sub-voltage nanoelectronics and related technologies (22 nm technological node of CMOS and beyond).[10]


  1. ^ Despotuli, Andreeva and Rambaby (June 7, 2006). "Nanoionics of advanced superionic conductors" (portable document format abstract only). Ionics. Berlin/Heidelberg: Springer. 11 (3–4): 306–314. doi:10.1007/BF02430394. Retrieved 2007-11-02. 
  2. ^ Geller, S. (1967-07-21). "Crystal Structure of the Solid Electrolyte, RbAg4I5". Science. 157 (3786): 310–312. doi:10.1126/science.157.3786.310. ISSN 0036-8075. PMID 17734228. 
  3. ^ Geller, S. (1979-01-01). "Crystal structure and conductivity of the solid electrolyte". Physical Review B. 19 (10): 5396–5402. doi:10.1103/PhysRevB.19.5396. 
  4. ^ Hull, S; Keen, D.A; Sivia, D.S; Berastegui, P. "Crystal Structures and Ionic Conductivities of Ternary Derivatives of the Silver and Copper Monohalides". Journal of Solid State Chemistry. 165 (2): 363–371. doi:10.1006/jssc.2002.9552. 
  5. ^ Lichkova, N. V.; Despotuli, A. L.; Zagorodnev, V. N.; Minenkova, N. A.; Shakhlevich, K. V. (1989-01-01). "Ionic conductivity of solid electrolytes in two- and three-component glass forming systems AgX-CsX (X=Cl, Br, I)". Ehlektrokhimiya (in Russian). 25 (12): 1636–1640. ISSN 0424-8570. 
  6. ^ Studenyak, I. P.; Kranjčec, M.; Bilanchuk, V. V.; Kokhan, O. P; Orliukas, A. F.; Kezionis, A.; Kazakevicius, E.; Salkus, T. (2009-12-01). "Temperature variation of electrical conductivity and absorption edge in Cu7GeSe5I advanced superionic conductor". Journal of Physics and Chemistry of Solids. 70 (12): 1478–1481. doi:10.1016/j.jpcs.2009.09.003. 
  7. ^ Despotuli, A.L.; Zagorodnev, V.N.; Lichkova, N.V.; Minenkova, N.A. (1989). "New high conductive CsAg4Br1−xI2+x (0.25 < x <1) solid electrolytes". Soviet Physics Solid State. 31: 242–244. 
  8. ^ Funke, Klaus; Banhatti, Radha D.; Wilmer, Dirk; Dinnebier, Robert; Fitch, Andrew; Jansen, Martin (2006-03-01). "Low-Temperature Phases of Rubidium Silver Iodide:  Crystal Structures and Dynamics of the Mobile Silver Ions". The Journal of Physical Chemistry A. 110 (9): 3010–3016. doi:10.1021/jp054807v. ISSN 1089-5639. 
  9. ^ Chang, Jen-Hui; Zürn, Anke; von Schnering, Hans Georg (2008-10-01). "Hyperbolic Cation Diffusion Paths in α-RbAg4I5 Type Superionic Conductors". Zeitschrift für anorganische und allgemeine Chemie. 634 (12-13): 2156–2160. doi:10.1002/zaac.200800343. ISSN 1521-3749. 
  10. ^ Александр Деспотули, Александра Андреева (2007). Высокоёмкие конденсаторы для 0,5 вольтовой наноэлектроники будущего (Portable Document Format). Современная Электроника (in Russian) (7): 24–29. Retrieved 2007-11-02.  Alexander Despotuli, Alexandra Andreeva (2007). "High-capacity capacitors for 0.5 voltage nanoelectronics of the future" (Portable Document Format). Modern Electronics (7): 24–29. Retrieved 2007-11-02. 

External links[edit]