Affine Hecke algebra

From Wikipedia, the free encyclopedia
Jump to: navigation, search

In mathematics, an affine Hecke algebra is the Hecke algebra of an affine Weyl group, and can be used to prove Macdonald's constant term conjecture for Macdonald polynomials.

Definition[edit]

Let be a Euclidean space of a finite dimension and an affine root system on . An affine Hecke algebra is a certain associative algebra that deforms the group algebra of the Weyl group of (the affine Weyl group). It is usually denoted by , where is multiplicity function that plays the role of deformation parameter. For the affine Hecke algebra indeed reduces to .

Generalizations[edit]

Ivan Cherednik introduced generalizations of affine Hecke algebras, the so-called double affine Hecke algebra (usually referred to as DAHA). Using this he was able to give a proof of Macdonald's constant term conjecture for Macdonald polynomials (building on work of Eric Opdam). Another main inspiration for Cherednik to consider the double affine Hecke algebra was the quantum KZ equations.

References[edit]