Air suspension

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by 64.53.190.89 (talk) at 20:22, 16 July 2011 (→‎Overview). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

The Lincoln Town Car is one of the relatively few production passenger cars that utilize an air suspension system

Air suspension is a type of vehicle suspension powered by an engine driven or electric air pump or compressor. This pump pressurizes the air, using compressed air as a spring. Air suspension replaces conventional steel springs. If the engine is left off for an extended period, the car will settle to the ground. The purpose of air suspension is to provide a smooth ride quality and in some cases self-leveling.

Overview

Whilst not using high pressure mineral oil (as does the Citroën system), the system aims to achieve a result similar to the hydropneumatic suspension arrangement introduced in 1954 by Citroën.

One of the earliest implementations of air suspension was by Messier[1] in the 1920s.

With a "leg up" on other companies[citation needed], GM used its experience with commercial buses' air suspension to introduce systems for its car lines, beginning with the 1958 model year. Air bags at each wheel replaced the standard coil springs, and had sensors to keep the car level under load and in turns. It was, however too slow to react in sudden maneuvers.

Period reviews rated the air suspension somewhat superior in ride quality, but not dramatically. Some reliability issues plagued these systems, as well. Thus, as an option, air suspension was short lived in that era.

Vehicles that use air suspension today include models from Maybach, Rolls-Royce, Lexus, Jeep Grand Cherokee, Cadillac (GM), Mercedes-Benz, Land Rover/Range Rover, SsangYong, Audi, Subaru, Volkswagen, and Lincoln and Ford, among others. Citroën now feature Hydractive suspension, a computer controlled version of their Hydropneumatic system, which features sport and comfort modes, lowers the height of the car at high speeds and continues to maintain ride height when the engine is not running.

The air suspension designs from Land Rover, SsangYong, Subaru and some Audi, VW, and Lexus models, feature height adjustable suspension controlled by the driver, suitable for clearing rough terrain. The Lincoln Continental and Mark VIII also featured an air suspension system in which the driver could choose how sporty or comfortable they wanted the suspension to feel. These suspension settings were also linked to the memory seat system, meaning that the car would automatically adjust the suspension to the individual driver. The control system in the Mark VIII also lowered the suspension by about 25 mm (1 inch) at speeds exceeding about 100 km/h (60 mph)[2] for improved aerodynamic performance. Due to the many advantages air suspensions provide, and with the advancement of new materials and technologies, these systems are being designed on many future platforms. This is especially important as car manufacturers strive to improve gas mileage by reducing weight and utilizing active suspension technology to maximize performance.

In addition to passenger cars, air suspension is broadly used on semi trailers, trains (primarily passenger trains) and buses, which are all transportation sectors that helped pioneer the use and design of air suspension. An unusual application was on EMD's experimental Aerotrain.

Custom applications

Over the last decade or so air suspension has become extremely popular in the custom automobile culture: street rods, trucks, cars, and even motorcycles may have air springs. They are used in these applications to provide an adjustable suspension which allows vehicles to sit extremely low, yet be able rise to a level high enough to maneuver over obstacles and inconsistencies in the roadways (and parking lots). These systems generally employ small, electric or engine-driven air compressors which sometimes fill an on-board air receiver tank which stores compressed air for use in the future without delay. High-pressured industrial gas bottles (such as nitrogen or carbon dioxide tanks used to store shielding gases for welding) are sometimes used in more radical air suspension setups. Either of these reservoir systems may be fully adjustable, being able to adjust each wheel's air pressure individually. This allows the user to tilt the vehicle side to side, front to back, in some instances "hit a 3-wheel" (contort the vehicle so one wheel lifts up from the ground) or even "hop" the entire vehicle into the air. When a pressure reservoir is present, the flow of air or gas is commonly controlled with pneumatic solenoid valves. This allows the user to make adjustments by simply pressing a momentary-contact electric button or switch.

The installation and configuration of these systems varies for different makes and models but the underlying principle remains the same. The metal spring (coil or leaf) is removed, and an air bag, also referred to as an air spring, is inserted or fabricated to fit in the place of the factory spring. When air pressure is supplied to the air bag, the suspension can be adjusted either up or down (lifted or lowered).

For vehicles with leaf spring suspension such as pickup trucks, the leaf spring is sometimes eliminated and replaced with a multiple-bar linkage. These bars are typically in a trailing arm configuration and the air spring may be situated vertically between a link bar or the axle housing and a point on the vehicle's frame. In other cases, the air bag is situated on the opposite side of the axle from the main link bars on an additional cantilever member. If the main linkage bars are oriented parallel to the longitudinal (driving) axis of the car, the axle housing may be constrained laterally with either a Panhard rod or Watt's linkage. In some cases, two of the link bars may be combined into a triangular shape which effectively constrains the vehicles axle laterally.

Often, owners may desire to lower their vehicle to such an extent that they must cut away portions of the frame for more clearance. A reinforcement member commonly referred to as a C-notch is then bolted or welded to the vehicle frame in order to maintain structural integrity. Specifically on pickup trucks, this process is termed "notching" because a portion (notch) of the cargo bed may also be removed, along with the wheel wells, to provide maximum axle clearance. For some, it is desirable to have the vehicle so low that the frame rests on the ground when the air bags are fully deflated.

Common air suspension problems

Air bag or air strut failure is usually caused by wet rot, due to old age, or moisture within the air system that damages it from the inside. Air ride suspension parts may fail because rubber dries out. Punctures to the air bag may be caused from debris on the road. With custom applications, improper installation may cause the air bags to rub against the vehicle's frame or other surrounding parts, damaging it. The over-extension of an airspring which is not sufficiently constrained by other suspension components such as a shock absorber may also lead to the premature failure of an airspring through the tearing of the flexible layers.Failing of the Air bag may also result in completely immobilizing the vehicle. As the vehicle will rub against the ground or be too high to move.

Air line failure is a failure of the tubing which connects the air bags or struts to the rest of the air system, and is typically DOT-approved nylon air brake line. This usually occurs when the air lines, which must be routed to the air bags through the chassis of the vehicle, rub against a sharp edge of a chassis member or a moving suspension component, causing a hole to be formed. This mode of failure will typically take some time to occur after the initial installation of the system as the integrity of a section of air line is compromised to the point of failure due to the rubbing and resultant abrasion of the material. An air line failure may also occur if a piece of road debris hits an air line and punctures or tears it.

Compressor failure is primarily due to leaking air springs or air struts. The compressor will burn out trying to maintain the correct air pressure in a leaking air system. Compressor burnout may also be caused by moisture from within the air system coming into contact with its electronic parts.

In Dryer failure the dryer, which functions to remove moisture from the air system, eventually becomes saturated and unable to perform that function. This causes moisture to build up in the system and can result in damaged air springs and/or a burned out compressor.[3]

References

Notes