Alexandrov theorem

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search

In mathematical analysis, the Alexandrov theorem, named after Aleksandr Danilovich Aleksandrov, states that if U is an open subset of Rn and  f : URm  is a convex function, then f has a second derivative almost everywhere.

In this context, having a second derivative at a point means having a second-order Taylor expansion at that point with a local error smaller than any quadratic.

The result is closely related to Rademacher's theorem.

References[edit]

  • Niculescu, Constantin P.; Persson, Lars-Erik (2005). Convex Functions and their Applications: A Contemporary Approach. Springer-Verlag. p. 172. ISBN 0-387-24300-3. Zbl 1100.26002.
  • Villani, Cédric (2008). Optimal Transport: Old and New. Grundlehren Der Mathematischen Wissenschaften. 338. Springer-Verlag. p. 402. ISBN 3-540-71049-3. Zbl 1156.53003.