Alfred Hübler

From Wikipedia, the free encyclopedia
  (Redirected from Alfred Hubler)
Jump to: navigation, search
Alfred Hübler
Research physicist and director of the Center for Complex Systems Research
Born (1957-05-16) May 16, 1957 (age 60)
Munich, Germany
Nationality United States
Fields Physics
Institutions University of Illinois at Urbana-Champaign
Alma mater Technical University of Munich

Alfred Wilhelm Hübler (also-Hubler) is a German-born research physicist at the University of Illinois at Urbana-Champaign (UIUC) Frederick Seitz Materials Research Laboratory as well as a tenured faculty member in the University Illinois Department of Physics. He is the director of the Center for Complex Systems Research (CCSR) and an external faculty member of the Santa Fe Institute.


Alfred Hübler was born in Munich, (West) Germany in 1957. He earned a doctorate in Nuclear Condensed Matter Physics from the Technical University of Munich in 1983. His Ph.D. research was on controlling chaos and fractal particle agglomeration processes. After his Ph.D., Hubler was invited to join Hermann Haken's Synergetics group at the University of Stuttgart as a post doc.

Hübler has been a faculty member of the Department of Physics at the University of Illinois at Urbana-Champaign since 1989 as well as a long-time external faculty member of New Mexico's Santa Fe Institute. From 1993 to 1994, he was a Toshiba chair professor at Keio University in Tokio, Japan. He is also the Executive Editor of the journal Complexity.[1]

Hübler has published more than 50 papers in peer reviewed journals about his experimental and theoretical research on complex systems. His 2008 publication, entitled "A simple, low-cost data-logging pendulum built from a computer mouse" [2] is one of the most downloaded papers of all Institute of Physics journal articles (in the top 3%). The American Physical Society (APS) listed his paper on mixed reality on the APS tipsheet and invited him to give a press conference on this topic at the 2008 March meeting. Hübler has a 1997 US patent on minimum dissipation quantum-dot transistors and in 2009 the UIUC filed a patent in his name on digital quantum batteries.

Research Interests[edit]

Concepts governing the dynamics and structure of emergent patterns in open dissipative systems; mixed reality; prediction and control of fractal network dynamics; entrainment of cancer cells; energy conversion, storage, and distribution; dissipate wave-particle systems; solitons; homeopathy;[3] flames and shock waves; turbulence; reverse osmosis and filtration with fractal absorbers; conceptual networks; quantitative measures for knowledge and intelligence; natural language parsing.

See also[edit]


Here are some of Hübler's more important publications:

  • F. Dinkelacker, A. Hübler, E. Lüscher, (1987), "Pattern formation of powder on a vibrating disc" Biol.Cybern. 56: 51–56
  • J. Cremers, A. Hübler (1987), "Construction of differential equations from experimental data", Z.Naturforsch 42a: 797–802.
  • A. Hübler, E. Lüscher (1989), "Resonant Stimulation and Control of Nonlinear Oscillators", Naturwissenschaften 76: 67–69.
  • A. Hübler (1989), "Adaptive Control of Chaotic Systems", Helv.Phys.Acta 62: 343–346.
  • R. Wittmann, T. Kautzky, A. Hübler, E. Lüscher (1991), "A simple experiment for the examination of dendritic river systems", Naturwissenschaften 78: 23–25.
  • M. Sperl, A. Chang, N. Weber, A. Hübler (1999), "Hebbian learning in the agglomeration of conducting particles", Phys.Rev.E 59: 3165-3168.
  • P. Melby, J. Kaidel, N. Weber, A. Hübler, (2000), "Adaptation to the edge of chaos in the self-adjusting logistic map", Phys.Rev.Lett. 84: 5991–5993.
  • C. Strelioff, A. Hübler (2006), "Medium term prediction of chaos", Phys.Rev.Lett. 96: 044101-1-4.
  • M.S. Singleton, A. Hübler (2007), "Learning rate and attractor size of the single-layer perceptrons", Phys.Rev.E 75: 057201.
  • A. Hübler, O. Osuagwu (2010), "Digital Quantum Batteries: Energy and information storage in nano vacuum, tube arrays", Complexity 15(5): 48–55.
  • V. Soni, P. Ketisch, J. Rodriguez, A. Shpunt, and A.Hubler. Topological similarities in electrical and hydrological drainage networks. J. Appl. Phys. 109, 036103 (2011)
  • A. Hubler et al. (2013), "Nano Vacuum Tube Arrays for Energy Storage", US Patent, No. 8,699,206.
  • A. Hubler, David Lyon (2013), "Gap Size Dependence of the Dielectric Strength in Nano Vacuum Gaps", IEEE Transactions on Dielectrics and Electrical Insulation 20(4): 1467-1471.
  • A. Hubler, M. Tomicic (2013), "Star Shaped Solids: Objects with a Negative Dimension", Complexity 19(3): 7-9.
  • A. Hubler (2013), "Synthetic Atoms: Large energy density and record power density", Complexity 18(4): 12-14.
  • E. Shinn, A. Hubler, D. Lyon, M. Grosse-Perdekamp, A. Bezryadin, and A. Belkin (2013), "Nuclear Energy Conversion with Stacks of Graphene Nano-capacitors", Complexity 18(3): 24-27 (won DOE Nuclear Fuel Cycle Innovation Award).
  • A. Hubler and D. Lyon, "Gap Size Dependence of the Dielectric Strength in Nano Vacuum Gaps". IEEE Trans. Dielectr. Electr. Insul. 20, 4, 1467-1471 (2014).
  • A. Belkin, A. Hubler, A. Bezryadin. "Self-Assembled Wiggling Nano-Structures and the Principle of Maximum Entropy Production". Sci. Rep. 5, 8323 (2015).
  • C. Stephenson, and A. Hubler, "Stability and conductivity of self assembled wires in a transverse electric field". Sci. Rep. 5, 15044 (2015).


  1. ^
  2. ^ V. Gintautas, A. Hübler (2008). "A simple, low-cost data-logging pendulum built from a computer mouse". Physics Education. 44: 488–491. Bibcode:2009PhyEd..44..488G. arXiv:0901.4319Freely accessible. doi:10.1088/0031-9120/44/5/006. 
  3. ^

External links[edit]