Alternative set theory

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search

In a general sense, an alternative set theory is any of the alternative mathematical approaches to the concept of set and an alternative to standard set theory.

Some of the alternative set theories are: [1]

Vopěnka’s Alternative Set Theory[edit]

Specifically, Alternative Set Theory (or AST) may refer to a particular set theory developed in the 1970s and 1980s by Petr Vopěnka and his students. It builds on some ideas of the theory of semisets, but also introduces more radical changes: for example, all sets are "formally" finite, which means that sets in AST satisfy the law of mathematical induction for set-formulas (more precisely: the part of AST that consists of axioms related to sets only is equivalent to the Zermelo–Fraenkel (or ZF) set theory, in which the axiom of infinity is replaced by its negation). However, some of these sets contain subclasses that are not sets, which makes them different from Cantor (ZF) finite sets and they are called infinite in AST.

See also[edit]

References[edit]

  1. ^ Holmes, M. Randall. "Alternative Axiomatic Set Theories". Stanford Encyclopedia of Philosophy. Retrieved 17 January 2020.
  • Vopěnka, P. Mathematics in the Alternative Set Theory. Teubner, Leipzig, 1979.
  • Proceedings of the 1st Symposium Mathematics in the Alternative Set Theory. JSMF, Bratislava, 1989.