American foulbrood

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
Field test for American foulbrood

American foulbrood (AFB, Histolysis infectiosa perniciosa larvae apium, Pestis americana larvae apium), caused by the spore-forming bacteria Paenibacillus larvae ssp. larvae (formerly classified as Bacillus larvae[1]), is a highly infectious bee disease. It is the most widespread and destructive of the bee brood diseases.


Paenibacillus larvae is a rod-shaped bacterium, which is visible only under a high power microscope. Larvae up to 3 days old become infected by ingesting spores that are present in their food. Young larvae less than 24 hours old are most susceptible to infection. Spores germinate in the gut of the larva and the vegetative form of the bacteria begins to grow, taking its nourishment from the larva. Spores will not germinate in larvae over 3 days old. Infected larvae normally die after their cell is sealed. The vegetative form of the bacterium will die but not before it produces many millions of spores. Each dead larva may contain as many as 100 million spores. This disease only affects the bee larvae but is highly infectious and deadly to bee brood. Infected larvae darken and die.[2][3]


Until 1906 American foulbrood was not differentiated from European foulbrood, and the condition was simply referred to as foulbrood. Thereafter, the terms European and American were used to distinguish the diseases.[4] However the designations do not refer to the geographical distributions but to the areas where they were first investigated scientifically.[5] In 1907, it was demonstrated conclusively that a bacterium called Bacillus larvae was the cause of American foulbrood disease by fulfilling Koch's postulates.[6] The geographical origin of AFB is unknown, but it is found almost worldwide.[7][8]


Lab testing is necessary for definitive diagnosis, but a good field test is to touch a dead larva with a toothpick or twig. It will be sticky and "ropey" (drawn out). Foulbrood also has a characteristic odor, and experienced beekeepers with a good sense of smell can often detect the disease upon opening a hive.[9] However, this odour may not be noticeable until the disease is in an advanced stage. Since response and treatment is required as early as possible to protect other colonies, absence of odour cannot be relied on as indicating absence of foulbrood. Only regular and thorough inspection of the brood can identify the disease in its early stages.

The most reliable disease diagnosis is done by sending in some possibly affected brood comb to a laboratory specialized in identifying honey bee diseases.[10]

Disease spread[edit]

When cleaning infected cells, bees distribute spores throughout the entire colony. Disease spreads rapidly throughout the hive as the bees, attempting to remove the spore-laden dead larvae, contaminate brood food. Nectar stored in contaminated cells will contain spores and soon the brood chamber becomes filled with contaminated honey. As this honey is moved up into the supers, the entire hive becomes contaminated with spores. When the colony becomes weak from AFB infection, robber bees may enter and take contaminated honey back to their hives thereby spreading the disease to other colonies and apiaries[11]. Beekeepers also may spread disease by moving equipment (frames or supers) from contaminated hives to healthy ones.

American foulbrood spores are extremely resistant to desiccation and can remain viable for more than 40 years in honey and beekeeping equipment. Therefore, honey from an unknown source should never be used as bee feed, and used beekeeping equipment should be assumed contaminated unless known to be otherwise.[12]

Beehives with American foul brood should be burned due to spores that remain viable for up to 40 years.


Antibiotics, in non-resistant strains of the pathogen, can prevent the vegetative state of the bacterium forming. Drug treatment to prevent the American foulbrood spores from successfully germinating and proliferating is possible using oxytetracycline hydrochloride (Terramycin).[13] Another drug treatment, tylosin tartrate, was approved by the US Food and Drug Administration (FDA) in 2005.[14]

Chemical treatment is sometimes used prophylactically, but this is a source of considerable controversy because certain strains of the bacterium seem to be rapidly developing resistance.[15] In addition, hives that are contaminated with millions of American foulbrood spores have to be prophylactically treated indefinitely. Once the treatment is suspended the American foulbrood spores germinate successfully again leading to a disease outbreak.

Because of the persistence of the spores (which can survive up to 40 years), many State Apiary Inspectors require an AFB diseased hive to be burned completely. A less radical method of containing the spread of disease is burning the frames and comb and thoroughly flame scorching the interior of the hive body, bottom board and covers. Dipping the hive parts in hot paraffin wax or a 3% sodium hypochlorite solution (bleach) also renders the AFB spores innocuous.[16] It is also possible to sterilize an infected hive without damaging either the structure of the hive or the stores of honey and pollen it contains by sufficiently lengthy exposure to an atmosphere of ethylene oxide gas, as in a closed chamber, as hospitals do to sterilize equipment that cannot withstand steam sterilization.[17]

Brigham Young University is currently studying the phage therapy to treat American foulbrood.[18]

Recent discoveries of antagonistic effect of beneficial bacteria on pathogenecity of Paenibacillus larvae, the infective agent of American foulbrood, has identified a possible new approach to control this disease. Researcher from SLU and Lund University has noticed that a group of lactic acid- producing bacteria inhibit the growth of the spore and vegetative cells of Paenibacillus larvae under laboratory condition. However the same results were not replicated at the colony level due to the hemostatic mechanisms of honey bee colonies. [19]


  1. ^ Marian JELINSKI,
  2. ^ Foul brood disease of honey bees:recognition and control Archived March 18, 2009, at the Wayback Machine Central Science Laboratory National Bee Unit, Department for Environment, Food and Rural Affairs (DEFRA); United Kingdom (excellent publication with many pictures)
  3. ^ "Bees Disease: One Step Closer To A Cure." ScienceDaily 4 May 2008
  4. ^ Phillips (1906)
  5. ^ Shimanuki, Hachiro; Knox, David A. Diagnosis of Honey Bee Diseases Archived 2006-12-09 at the Wayback Machine USDA
  6. ^ White 1907
  7. ^ Matheson, 1993,1996
  8. ^ American Foulbrood disease A.M. Alippi Laboratorio de Fitopatologia, Facultad de Ciencias Agrarias y Forestales Universidad Nacional deL a Plata, Calle 60 y 118, C.C. 31, 1900 La Plata, Argentina
  9. ^ "American Foulbrood (AFB)". Bear Country Bees.
  10. ^ USDA Agricultural Research Service Submission of Samples for Diagnosis (2007)
  11. ^ von Büren, R.S.; et al. (2019). "High-resolution maps of Swiss apiaries and their applicability to study spatial distribution of brood diseases". PeerJ. doi:10.7717/peerj.6393.
  12. ^ American Foul Brood-Prevention and Control Pennsylvania Department of Agriculture
  13. ^ Calderone, Nicholas Management of Honey Bee Brood Diseases Archived July 27, 2011, at the Wayback Machine (January 2001) Cornell University
  14. ^ USDA Agricultural Research Service New Antibiotic Approved for Treating Bacterial Honey Bee Disease
  15. ^ Powell, Gordon Cleaning up American Foulbrood Archived 2006-03-15 at the Wayback Machine Iowa Honey Producers Association, The Buzz Newsletter (Jan 2006)
  16. ^ Dobbelaere W, de Graaf DC, Reybroeck W, Desmedt E, Peeters JE, Jacobs FJ Disinfection of wooden structures contaminated with Paenibacillus larvae subsp. larvae spores Archived 2016-08-18 at the Wayback Machine Journal of Applied Microbology (Aug 2, 2001)
  17. ^ Robinson. "Gas Sterilization of Beekeeping Equipment Contaminated by the American Foulbrood Organism, Bacillus larvae". 55. The Florida Entomologist: 43–51. JSTOR 3493642.
  18. ^ "Bee Killers: Using Phages Against Deadly Honeybee Diseases - YouTube". Retrieved 2014-11-29.
  19. ^ Sepideh, Lamei, (2018-05-03). "The effect of honeybee-specific lactic acid aacteria on american foulbrood disease of honeybees". Retrieved 2018-06-12.

External links[edit]