Andrew Childs

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
Andrew MacGregor Childs
NationalityUnited States
Alma materCalifornia Institute of Technology
Massachusetts Institute of Technology
Scientific career
FieldsComputer science, Physics
InstitutionsUniversity of Maryland
University of Waterloo
Doctoral advisorEdward Farhi
Doctoral studentsRobin Kothari, Laura Mančinska, Māris Ozols, Zak Webb

Andrew MacGregor Childs is an American computer scientist and physicist known for his work on quantum computing. He is currently a Professor in the Department of Computer Science and Institute for Advanced Computer Studies at the University of Maryland. He also co-directs the Joint Center for Quantum Information and Computer Science, a partnership between the University of Maryland and the National Institute of Standards and Technology.[1]


Andrew Childs received a doctorate in physics from MIT in 2004, advised by Edward Farhi.[2] His thesis was on Quantum Information Processing in Continuous Time.[3] After completing his Ph.D., Childs was a DuBridge Postdoctoral Scholar at the Institute for Quantum Information at the California Institute of Technology from 2004–2007.[4] From 2007–2014, he was a faculty member in the Department of Combinatorics and Optimization and the Institute for Quantum Computing at the University of Waterloo. Childs joined the University of Maryland in 2014. He is also a senior fellow of the Canadian Institute for Advanced Research.[5]


Childs is known for his work on quantum computing, especially on the development of quantum algorithms.[6][7][8] He helped to develop the concept of a quantum walk[9][10][11][12] leading to an example of exponential quantum speedup and algorithms for spatial search,[13] formula evaluation, and universal computation[14][15] He also developed quantum algorithms for algebraic problems and for simulating quantum systems.

Selected works[edit]

  • A. M. Childs; R. Cleve; E. Deotto; E. Farhi; S. Gutmann & D. A. Spielman (2002). "Exponential algorithmic speedup by a quantum walk". Exponential algorithmic speedup by quantum walk. Proc. th ACM Symposium on Theory of Computing (STOC ), pp. 35. pp. 59–68. arXiv:quant-ph/0209131. doi:10.1145/780542.780552. ISBN 1-58113-674-9.
  • Childs, Andrew M. (2008). "Universal computation by quantum walk". Physical Review Letters. 102 (18): 180501. arXiv:0806.1972. Bibcode:2009PhRvL.102r0501C. doi:10.1103/PhysRevLett.102.180501. PMID 19518851.
  • Childs, Andrew M.; Farhi, Edward; Preskill, John (2001). "Robustness of adiabatic quantum computation". Physical Review A. 65 (2002): 012322. arXiv:quant-ph/0108048. Bibcode:2002PhRvA..65a2322C. doi:10.1103/PhysRevA.65.012322.
  • Ambainis, Andris; Childs, Andrew M.; Reichardt, Ben W.; Spalek, Robert; Zhang, Shengyu (2007). "Any AND-OR Formula of Size N can be Evaluated in time N^{1/2 + o(1)} on a Quantum Computer". 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07). pp. 2513–2530. doi:10.1109/FOCS.2007.57. ISBN 0-7695-3010-9.
  • Childs, Andrew M.; Gosset, David; Webb, Zak (2012). "Universal computation by multi-particle quantum walk". Science. 339 (6121): 791–794. arXiv:1205.3782. Bibcode:2013Sci...339..791C. doi:10.1126/science.1229957. PMID 23413349.
  • Berry, Dominic W.; Childs, Andrew M.; Cleve, Richard; Kothari, Robin; Somma, Rolando D. (2013). "Exponential improvement in precision for simulating sparse Hamiltonians". Proceedings of the 46th Annual ACM Symposium on Theory of Computing – STOC '14. 46. pp. 283–292. arXiv:1312.1414. doi:10.1145/2591796.2591854. ISBN 978-1-4503-2710-7.
  • Childs, Andrew M. (2008). "On the relationship between continuous- and discrete-time quantum walk". Communications in Mathematical Physics. 294 (2): 581–603. arXiv:0810.0312. Bibcode:2010CMaPh.294..581C. doi:10.1007/s00220-009-0930-1.


  1. ^ "Quantum Information Expert Andrew Childs Joins UMD as Co-Director of QuICS – QuICS".
  2. ^ Andrew Childs at the Mathematics Genealogy Project
  3. ^ A.M. Childs (2004). Quantum information processing in continuous time (Ph.D. thesis). Massachusetts Institute of Technology. hdl:1721.1/16663.
  4. ^ "IQI People". Archived from the original on 2015-11-08. Retrieved 2015-11-20.
  5. ^ "Andrew Childs : CIFAR".
  6. ^ Jordan, Stephen. "Quantum Algorithm Zoo". Archived from the original on 2018-04-29. Retrieved 2015-11-20.
  7. ^ Bacon, Dave; Van Dam, Wim (2010). "Recent progress in quantum algorithms". Communications of the ACM. 53 (2): 84–93. doi:10.1145/1646353.1646375.
  8. ^ Montanaro, Ashley (2016). "Quantum algorithms: An overview". npj Quantum Information. 2: 15023. arXiv:1511.04206. Bibcode:2016npjQI...215023M. doi:10.1038/npjqi.2015.23.
  9. ^ Venegas-Andraca, Salvador Elías (2012). "Quantum walks: A comprehensive review". Quantum Information Processing. 11 (5): 1015–1106. arXiv:1201.4780. doi:10.1007/s11128-012-0432-5.
  10. ^ Reitzner, Daniel; Nagaj, Daniel; Bužek, Vladimír (2011). "Quantum Walks". Acta Physica Slovaca. Reviews and Tutorials. 61 (6): 603. arXiv:1207.7283. Bibcode:2011AcPSl..61..603R. doi:10.2478/v10155-011-0006-6.
  11. ^ A.Ambainis (2003). "Quantum Walks and Their Algorithmic Applications". International Journal of Quantum Information. 01 (4): 507–518. arXiv:quant-ph/0403120. doi:10.1142/S0219749903000383.
  12. ^ Kempe, J (2003). "Quantum random walks: An introductory overview". Contemporary Physics. 44 (4): 307–327. arXiv:quant-ph/0303081. Bibcode:2003ConPh..44..307K. doi:10.1080/00107151031000110776.
  13. ^ Childs, Andrew M.; Goldstone, Jeffrey (2003). "Spatial search by quantum walk". Physical Review A. 70 (2): 022314. arXiv:quant-ph/0306054. Bibcode:2004PhRvA..70b2314C. doi:10.1103/PhysRevA.70.022314.
  14. ^ Childs, Andrew M. (2008). "Universal computation by quantum walk". Physical Review Letters. 102 (18): 180501. arXiv:0806.1972. Bibcode:2009PhRvL.102r0501C. doi:10.1103/PhysRevLett.102.180501. PMID 19518851.
  15. ^ "Researchers Suggest Scalable Quantum Computing Model". 19 February 2013.

External links[edit]