Anthony W. Knapp

From Wikipedia, the free encyclopedia
  (Redirected from Anthony Knapp)
Jump to navigation Jump to search

Anthony W. Knapp (born 2 December 1941, Morristown, New Jersey)[1] is an American mathematician at the State University of New York, Stony Brook working on representation theory, who classified the tempered representations of a semisimple Lie group.

He won the Leroy P. Steele Prize for Mathematical Exposition in 1997.[2] In 2012 he became a fellow of the American Mathematical Society.[3]

Selected publications[edit]

  • Basic algebra and Advanced algebra. – Boston: Birkhäuser, 2006, 2007 (Cornerstones) ISBN 0-8176-3248-4 (set) Zbl.1106.00001 Zbl.1133.00001
  • Elliptic curves. – Princeton, 1992[4] (Mathematical notes; 40) ISBN 0-691-08559-5 Zbl.0804.14013
  • Representation theory of semisimple groups : An overview based on examples, (Originally publ. 1986)[5] Princeton: University Press, 2001. (Princeton Landmarks in Mathematics) ISBN 0-691-09089-0.
  • Lie Groups: Beyond an Introduction, (Originally publ. 1996)[6] Second Edition, Progress in Mathematics, Vol. 140, Birkhäuser, Boston, 2002. ISBN 0-8176-4259-5.
  • (with David A. Vogan) Cohomological Induction and Unitary Representations, Princeton Mathematical Series 45, Princeton University Press, Princeton, New Jersey, 1995.
  • (with Gregg Zuckerman) Classification of irreducible tempered representations of semisimple Lie groups Proceedings of the National Academy of Sciences of the United States of America 73, No. 7 (Jul. 1976), pp. 2178–2180
  • (with Gregg Zuckerman) "Classification of irreducible tempered representations of semisimple groups" Annals of Mathematics 116 (1982) 389–501, correction 119 (1984) 639.

References[edit]

  1. ^ American Men and Women of Science, Thomson Gale
  2. ^ "1997 Steele Prizes" (PDF). Notices of the AMS.
  3. ^ List of Fellows of the American Mathematical Society, retrieved 2013-01-27.
  4. ^ Langlands, Robert P. (1994). "Review: Elliptic curves, by Anthony W. Knapp". Bulletin of the American Mathematical Society. New Series. 30 (1): 96–100. doi:10.1090/s0273-0979-1994-00455-0.
  5. ^ Vogan, David A. (1987). "Review: Representation theory of semisimple groups. An overview based on examples, by Anthony W. Knapp". Bulletin of the American Mathematical Society. New Series. 17 (2): 392–396. doi:10.1090/s0273-0979-1987-15612-6.
  6. ^ Vogan Jr., David A. (1999). "Review: Lie groups: Beyond an introduction, by A. W. Knapp". Bull. Amer. Math. Soc. New Series. 36 (4): 483–488. doi:10.1090/S0273-0979-99-00790-9.

External links[edit]