This is a good article. Click here for more information.


From Wikipedia, the free encyclopedia
Jump to: navigation, search
This article is about the element. For the town, see Antimony, Utah. For the mountain, see Antimony Peak. For the paradox, see Antinomy.
Antimony,  51Sb
General properties
Name, symbol antimony, Sb
Pronunciation UK /ˈæntməni/, AN-ti-mə-nee
US /ˈæntmni/, AN-ti-moh-nee
Appearance silvery lustrous gray
Antimony in the periodic table
Hydrogen (diatomic nonmetal)
Helium (noble gas)
Lithium (alkali metal)
Beryllium (alkaline earth metal)
Boron (metalloid)
Carbon (polyatomic nonmetal)
Nitrogen (diatomic nonmetal)
Oxygen (diatomic nonmetal)
Fluorine (diatomic nonmetal)
Neon (noble gas)
Sodium (alkali metal)
Magnesium (alkaline earth metal)
Aluminium (post-transition metal)
Silicon (metalloid)
Phosphorus (polyatomic nonmetal)
Sulfur (polyatomic nonmetal)
Chlorine (diatomic nonmetal)
Argon (noble gas)
Potassium (alkali metal)
Calcium (alkaline earth metal)
Scandium (transition metal)
Titanium (transition metal)
Vanadium (transition metal)
Chromium (transition metal)
Manganese (transition metal)
Iron (transition metal)
Cobalt (transition metal)
Nickel (transition metal)
Copper (transition metal)
Zinc (transition metal)
Gallium (post-transition metal)
Germanium (metalloid)
Arsenic (metalloid)
Selenium (polyatomic nonmetal)
Bromine (diatomic nonmetal)
Krypton (noble gas)
Rubidium (alkali metal)
Strontium (alkaline earth metal)
Yttrium (transition metal)
Zirconium (transition metal)
Niobium (transition metal)
Molybdenum (transition metal)
Technetium (transition metal)
Ruthenium (transition metal)
Rhodium (transition metal)
Palladium (transition metal)
Silver (transition metal)
Cadmium (transition metal)
Indium (post-transition metal)
Tin (post-transition metal)
Antimony (metalloid)
Tellurium (metalloid)
Iodine (diatomic nonmetal)
Xenon (noble gas)
Caesium (alkali metal)
Barium (alkaline earth metal)
Lanthanum (lanthanide)
Cerium (lanthanide)
Praseodymium (lanthanide)
Neodymium (lanthanide)
Promethium (lanthanide)
Samarium (lanthanide)
Europium (lanthanide)
Gadolinium (lanthanide)
Terbium (lanthanide)
Dysprosium (lanthanide)
Holmium (lanthanide)
Erbium (lanthanide)
Thulium (lanthanide)
Ytterbium (lanthanide)
Lutetium (lanthanide)
Hafnium (transition metal)
Tantalum (transition metal)
Tungsten (transition metal)
Rhenium (transition metal)
Osmium (transition metal)
Iridium (transition metal)
Platinum (transition metal)
Gold (transition metal)
Mercury (transition metal)
Thallium (post-transition metal)
Lead (post-transition metal)
Bismuth (post-transition metal)
Polonium (post-transition metal)
Astatine (metalloid)
Radon (noble gas)
Francium (alkali metal)
Radium (alkaline earth metal)
Actinium (actinide)
Thorium (actinide)
Protactinium (actinide)
Uranium (actinide)
Neptunium (actinide)
Plutonium (actinide)
Americium (actinide)
Curium (actinide)
Berkelium (actinide)
Californium (actinide)
Einsteinium (actinide)
Fermium (actinide)
Mendelevium (actinide)
Nobelium (actinide)
Lawrencium (actinide)
Rutherfordium (transition metal)
Dubnium (transition metal)
Seaborgium (transition metal)
Bohrium (transition metal)
Hassium (transition metal)
Meitnerium (unknown chemical properties)
Darmstadtium (unknown chemical properties)
Roentgenium (unknown chemical properties)
Copernicium (transition metal)
Nihonium (unknown chemical properties)
Flerovium (post-transition metal)
Moscovium (unknown chemical properties)
Livermorium (unknown chemical properties)
Tennessine (unknown chemical properties)
Oganesson (unknown chemical properties)


Atomic number (Z) 51
Group, block group 15 (pnictogens), p-block
Period period 5
Element category   metalloid
Standard atomic weight (±) (Ar) 121.760(1)[1]
Electron configuration [Kr] 4d10 5s2 5p3
Electrons per shell
2, 8, 18, 18, 5
Physical properties
Phase solid
Melting point 903.78 K ​(630.63 °C, ​1167.13 °F)
Boiling point 1908 K ​(1635 °C, ​2975 °F)
Density near r.t. 6.697 g/cm3
when liquid, at m.p. 6.53 g/cm3
Heat of fusion 19.79 kJ/mol
Heat of vaporization 193.43 kJ/mol
Molar heat capacity 25.23 J/(mol·K)
Vapor pressure
P (Pa) 1 10 100 1 k 10 k 100 k
at T (K) 807 876 1011 1219 1491 1858
Atomic properties
Oxidation states 5, 4, 3, 2, 1, −1, −2, −3 ​(an amphoteric oxide)
Electronegativity Pauling scale: 2.05
Ionization energies 1st: 834 kJ/mol
2nd: 1594.9 kJ/mol
3rd: 2440 kJ/mol
Atomic radius empirical: 140 pm
Covalent radius 139±5 pm
Van der Waals radius 206 pm
Crystal structure rhombohedral
Rhombohedral crystal structure for antimony
Speed of sound thin rod 3420 m/s (at 20 °C)
Thermal expansion 11 µm/(m·K) (at 25 °C)
Thermal conductivity 24.4 W/(m·K)
Electrical resistivity 417 nΩ·m (at 20 °C)
Magnetic ordering diamagnetic[2]
Magnetic susceptibility (χmol) −99.0·10−6 cm3/mol[3]
Young's modulus 55 GPa
Shear modulus 20 GPa
Bulk modulus 42 GPa
Mohs hardness 3.0
Brinell hardness 294–384 MPa
CAS Number 7440-36-0
Discovery ca. 800
Most stable isotopes of antimony
iso NA half-life DM DE (MeV) DP
121Sb 57.21% is stable with 70 neutrons
123Sb 42.79% is stable with 72 neutrons
125Sb syn 2.7582 y β 0.767 125Te
| references | in Wikidata

Antimony is a chemical element with symbol Sb (from Latin: stibium) and atomic number 51. A lustrous gray metalloid, it is found in nature mainly as the sulfide mineral stibnite (Sb2S3). Antimony compounds have been known since ancient times and were powdered for use as medicine and cosmetics, often known by the Arabic name, kohl.[4] Metallic antimony was also known, but it was erroneously identified as lead upon its discovery. In the West, it was first isolated by Vannoccio Biringuccio and described in 1540.

For some time, China has been the largest producer of antimony and its compounds, with most production coming from the Xikuangshan Mine in Hunan. The industrial methods for refining antimony are roasting and reduction with carbon or direct reduction of stibnite with iron.

The largest applications for metallic antimony is an alloy with lead and tin and the lead antimony plates in lead–acid batteries. Alloys of lead and tin with antimony have improved properties for solders, bullets and plain bearings. Antimony compounds are prominent additives for chlorine and bromine-containing fire retardants found in many commercial and domestic products. An emerging application is the use of antimony in microelectronics.



A clear vial containing small chunks of a slightly lustrous black solid, labeled "Sb".
A vial containing the black allotrope of antimony
An irregular piece of silvery stone with spots of variation in lustre and shade.
Native antimony with oxidation products
Crystal structure common to Sb, AsSb and gray As

Antimony is in a pnictogen (a member of group 15) and has an electronegativity of 2.05. In accordance with periodic trends, it is more electronegative than tin or bismuth, and less electronegative than tellurium or arsenic. Antimony is stable in air at room temperature, but reacts with oxygen if heated to produce antimony trioxide, Sb2O3.[5]:758

Antimony is a silvery, lustrous gray metalloid with a Mohs scale hardness of 3, which is too soft to make hard objects; coins of antimony were issued in China's Guizhou province in 1931 but the durability was poor and the minting was soon discontinued.[6] Antimony is resistant to attack by acids.

Four allotropes of antimony are known: a stable metallic form and three metastable forms (explosive, black and yellow). Elemental antimony is a brittle, silver-white shiny metalloid. When slowly cooled, molten antimony crystallizes in a trigonal cell, isomorphic with the gray allotrope of arsenic. A rare explosive form of antimony can be formed from the electrolysis of antimony trichloride. When scratched with a sharp implement, an exothermic reaction occurs and white fumes are given off as metallic antimony forms; when rubbed with a pestle in a mortar, a strong detonation occurs. Black antimony is formed upon rapid cooling of antimony vapor. It has the same crystal structure as red phosphorus and black arsenic, it oxidizes in air and may ignite spontaneously. At 100 °C, it gradually transforms into the stable form. The yellow allotrope of antimony is the most unstable. It has only been generated by oxidation of stibine (SbH3) at −90 °C. Above this temperature and in ambient light, this metastable allotrope transforms into the more stable black allotrope.[7][8][9]

Elemental antimony adopts a layered structure (space group R3m No. 166) in which layers consist of fused, ruffled, six-membered rings. The nearest and next-nearest neighbors form an irregular octahedral complex, with the three atoms in each double layer slightly closer than the three atoms in the next. This relatively close packing leads to a high density of 6.697 g/cm3, but the weak bonding between the layers leads to the low hardness and brittleness of antimony.[5]:758


Main article: Isotopes of antimony

Antimony has two stable isotopes: 121Sb with a natural abundance of 57.36% and 123Sb with a natural abundance of 42.64%. It also has 35 radioisotopes, of which the longest-lived is 125Sb with a half-life of 2.75 years. In addition, 29 metastable states have been characterized. The most stable of these is 120m1Sb with a half-life of 5.76 days. Isotopes that are lighter than the stable 123Sb tend to decay by β+ decay, and those that are heavier tend to decay by β decay, with some exceptions.[10]



The abundance of antimony in the Earth's crust is estimated to be 0.2 to 0.5 parts per million, comparable to thallium at 0.5 parts per million and silver at 0.07 ppm.[11] Even though this element is not abundant, it is found in more than 100 mineral species. Antimony is sometimes found natively (e.g. on Antimony Peak), but more frequently it is found in the sulfide stibnite (Sb2S3) which is the predominant ore mineral.[11]


Antimony compounds are often classified according to their oxidation state: Sb(III) and Sb(V).[12] The +5 oxidation state is more stable.

Oxides and hydroxides[edit]

Antimony trioxide is formed when antimony is burnt in air.[13] In the gas phase, the molecule of the compound is Sb
, but it polymerizes upon condensing.[5] Antimony pentoxide (Sb
) can be formed only by oxidation with concentrated nitric acid.[14] Antimony also forms a mixed-valence oxide, antimony tetroxide (Sb
), which features both Sb(III) and Sb(V).[14] Unlike oxides of phosphorus and arsenic, these oxides are amphoteric, do not form well-defined oxoacids, and react with acids to form antimony salts.

Antimonous acid Sb(OH)
is unknown, but the conjugate base sodium antimonite ([Na
) forms upon fusing sodium oxide and Sb
.[5]:763 Transition metal antimonites are also known.[15]:122 Antimonic acid exists only as the hydrate HSb(OH)
, forming salts as the antimonate anion Sb(OH)
. When a solution containing this anion is dehydrated, the precipitate contains mixed oxides.[15]:143

Many antimony ores are sulfides, including stibnite (Sb
), pyrargyrite (Ag
), zinkenite, jamesonite, and boulangerite.[5]:757 Antimony pentasulfide is non-stoichiometric and features antimony in the +3 oxidation state and S-S bonds.[16] Several thioantimonides are known, such as [Sb
and [Sb


Antimony forms two series of halides: SbX
and SbX
. The trihalides SbF
, SbCl
, SbBr
, and SbI
are all molecular compounds having trigonal pyramidal molecular geometry.

The trifluoride SbF
is prepared by the reaction of Sb
with HF:[5]:761–762

+ 6 HF → 2 SbF
+ 3 H

It is Lewis acidic and readily accepts fluoride ions to form the complex anions SbF
and SbF2−
. Molten SbF
is a weak electrical conductor. The trichloride SbCl
is prepared by dissolving Sb
in hydrochloric acid:

+ 6 HCl → 2 SbCl
+ 3 H
Structure of gaseous SbF5

The pentahalides SbF
and SbCl
have trigonal bipyramidal molecular geometry in the gas phase, but in the liquid phase, SbF
is polymeric, whereas SbCl
is monomeric.[5]:761 SbF
is a powerful Lewis acid used to make the superacid fluoroantimonic acid ("H2SbF7").

Oxyhalides are more common for antimony than for arsenic and phosphorus. Antimony trioxide dissolves in concentrated acid to form oxoantimonyl compounds such as SbOCl and (SbO)

Antimonides, hydrides, and organoantimony compounds[edit]

Compounds in this class generally are described as derivatives of Sb3−. Antimony forms antimonides with metals, such as indium antimonide (InSb) and silver antimonide (Ag
).[5]:760 The alkali metal and zinc antimonides, such as Na3Sb and Zn3Sb2, are more reactive. Treating these antimonides with acid produces the unstable gas stibine, SbH

+ 3 H+

Stibine can also be produced by treating Sb3+
salts with hydride reagents such as sodium borohydride.[citation needed]Stibine decomposes spontaneously at room temperature. Because stibine has a positive heat of formation, it is thermodynamically unstable and thus antimony does not react with hydrogen directly.[12]

Organoantimony compounds are typically prepared by alkylation of antimony halides with Grignard reagents.[19] A large variety of compounds are known with both Sb(III) and Sb(V) centers, including mixed chloro-organic derivatives, anions, and cations. Examples include Sb(C6H5)3 (triphenylstibine), Sb2(C6H5)4 (with an Sb-Sb bond), and cyclic [Sb(C6H5)]n. Pentacoordinated organoantimony compounds are common, examples being Sb(C6H5)5 and several related halides.


An unshaded circle surmounted by a cross.
One of the alchemical symbols for antimony

Antimony(III) sulfide, Sb2S3, was recognized in predynastic Egypt as an eye cosmetic (kohl) as early as about 3100 BC, when the cosmetic palette was invented.[20]

An artifact, said to be part of a vase, made of antimony dating to about 3000 BC was found at Telloh, Chaldea (part of present-day Iraq), and a copper object plated with antimony dating between 2500 BC and 2200 BC has been found in Egypt.[7] Austen, at a lecture by Herbert Gladstone in 1892[21] commented that "we only know of antimony at the present day as a highly brittle and crystalline metal, which could hardly be fashioned into a useful vase, and therefore this remarkable 'find' (artifact mentioned above) must represent the lost art of rendering antimony malleable."[21]

Moorey was unconvinced the artifact was indeed a vase, mentioning that Selimkhanov, after his analysis of the Tello object (published in 1975), "attempted to relate the metal to Transcaucasian natural antimony" (i.e. native metal) and that "the antimony objects from Transcaucasia are all small personal ornaments."[21] This weakens the evidence for a lost art "of rendering antimony malleable."[21]

The Roman scholar Pliny the Elder described several ways of preparing antimony sulfide for medical purposes in his treatise Natural History.[22] Pliny the Elder also made a distinction between "male" and "female" forms of antimony; the male form is probably the sulfide, while the female form, which is superior, heavier, and less friable, has been suspected to be native metallic antimony.[23]

The Roman naturalist Pedanius Dioscorides mentioned that antimony sulfide could be roasted by heating by a current of air. It is thought that this produced metallic antimony.[22]

The Italian metallurgist Vannoccio Biringuccio described the first procedure of how to isolate antimony.

The first description of a procedure for isolating antimony is in the 1540 book De la pirotechnia by Vannoccio Biringuccio,[24] predating the more famous 1556 book by Agricola, De re metallica. In this context Agricola has been often incorrectly credited with the discovery of metallic antimony. The book Currus Triumphalis Antimonii (The Triumphal Chariot of Antimony), describing the preparation of metallic antimony, was published in Germany in 1604. It was purported to be written by a Benedictine monk, writing under the name Basilius Valentinus in the 15th century; if it were authentic, which it is not, it would predate Biringuccio.[note 1][8][26][27]

The metal antimony was known to German chemist Andreas Libavius in 1615 who obtained it by adding iron to a molten mixture of antimony sulfide, salt and potassium tartrate. This procedure produced antimony with a crystalline or starred surface.[22]

With the advent of challenges to phlogiston theory, it was recognized that antimony is an element forming sulfides, oxides, and other compounds, as do other metals.[22]

The first natural occurrence of pure antimony in the Earth's crust was described by the Swedish scientist and local mine district engineer Anton von Swab in 1783; the type-sample was collected from the Sala Silver Mine in the Bergslagen mining district of Sala, Västmanland, Sweden.[28][29]


The medieval Latin form, from which the modern languages and late Byzantine Greek take their names for antimony, is antimonium. The origin of this is uncertain; all suggestions have some difficulty either of form or interpretation. The popular etymology, from ἀντίμοναχός anti-monachos or French antimoine, still has adherents; this would mean "monk-killer", and is explained by many early alchemists being monks, and antimony being poisonous.[30]

Another popular etymology is the hypothetical Greek word ἀντίμόνος antimonos, "against aloneness", explained as "not found as metal", or "not found unalloyed".[7][31] Lippmann conjectured a hypothetical Greek word ανθήμόνιον anthemonion, which would mean "floret", and cites several examples of related Greek words (but not that one) which describe chemical or biological efflorescence.[32]

The early uses of antimonium include the translations, in 1050–1100, by Constantine the African of Arabic medical treatises.[33] Several authorities believe antimonium is a scribal corruption of some Arabic form; Meyerhof derives it from ithmid;[34] other possibilities include athimar, the Arabic name of the metalloid, and a hypothetical as-stimmi, derived from or parallel to the Greek.[35][36]

The standard chemical symbol for antimony (Sb) is credited to Jöns Jakob Berzelius, who derived the abbreviation from stibium.[37]

The ancient words for antimony mostly have, as their chief meaning, kohl, the sulfide of antimony. The Egyptians called antimony mśdmt; in hieroglyphs, the vowels are uncertain, but an Arabic tradition holds that the word is ميسديميت mesdemet.[38][39] The Greek word, στίμμι stimmi, is probably a loan word from Arabic or from Egyptian stm[30]

G17 F21

and is used by Attic tragic poets of the 5th century BC. Later Greeks also used στἰβι stibi, as did Celsus and Pliny, writing in Latin, in the first century AD. Pliny also gives the names stimi [sic], larbaris, alabaster, and the "very common" platyophthalmos, "wide-eye" (from the effect of the cosmetic). Later Latin authors adapted the word to Latin as stibium. The Arabic word for the substance, as opposed to the cosmetic, can appear as إثمد ithmid, athmoud, othmod, or uthmod. Littré suggests the first form, which is the earliest, derives from stimmida, an accusative for stimmi.[40]


World antimony output in 2010.[11]
World production trend of antimony.

Top producers and production volumes[edit]

The British Geological Survey (BGS) reported that in 2005, China was the top producer of antimony with approximately 84% of the world share, followed at a distance by South Africa, Bolivia and Tajikistan. Xikuangshan Mine in Hunan province has the largest deposits in China with an estimated deposit of 2.1 million metric tons.[41]

In 2015, according to the US Geological Survey, China accounted for 76.7% of total antimony production, followed in second place by Russia with 6.0% and Australia with 3.7%.[42]

Antimony production in 2015[11]
Country Tonnes  % of total
 China 115,000 76.7
 Russia 9,000 6.0
 Australia 5,500 3.7
 Bolivia 5,000 3.3
 Tajikistan 4,700 3.1
Top 5 139,200 92.8
Total world 150,000 100.0

Chinese production of Antimony is expected to decline in the future as mines and smelters are closed down by the government as part of pollution control. Especially due to a new environmental protection law having gone into effect on January 2015[43] and revised “Emission Standards of Pollutants for Stanum, Antimony, and Mercury”having gone into effect, hurdles for economic production are higher. According to the National Bureau of Statistics in China, by September 2015 50% of antimony production capacity in the Hunan province (the province with biggest Antimony reserves in China) had not been used.[44]

Reported production of antimony in China has fallen and is unlikely to increase in the coming years, according to the Roskill report. No significant antimony deposits in China have been developed for about ten years, and the remaining economic reserves are being rapidly depleted.[45]

The world's largest antimony producers, according to Roskill, are listed below:

Largest antimony producers in 2010.[46]
Country Company Capacity
(tonnes per year)
 Australia Mandalay Resources 2,750
 Bolivia various 5,460
 Canada Beaver Brook 6,000
 China Hsikwangshan Twinkling Star 55,000
 China Hunan Chenzhou Mining 20,000
 China China Tin Group 20,000
 China Shenyang Huachang Antimony 15,000
 Kazakhstan Kazzinc 1,000
 Kyrgyzstan Kadamdzhai 500
 Laos SRS 500
 Mexico US Antimony 70
 Myanmar various 6,000
 Russia GeoProMining 6,500
 South Africa Consolidated Murchison 6,000
 Tajikistan Unzob 5,500
 Thailand unknown 600
 Turkey Cengiz & Özdemir Antimuan Madenleri 2,400


According to statistics from the USGS, current global reserves of antimony will be depleted in 13 years. However, the USGS expects more resources will be found.

World antimony reserves in 2015[46]
Country Reserves
(tonnes of antimony content)
 % of total
 People's Republic of China 950,000 47.81
 Russia 350,000 17.61
 Bolivia 310,000 15.60
 Australia 140,000 7.05
 United States 60,000 3.02
 Tajikistan 50,000 2.52
 South Africa 27,000 1.36
Other countries 100,000 5.03
Total world 1,987,000 100.0

Production process[edit]

The extraction of antimony from ores depends on the quality and composition of the ore. Most antimony is mined as the sulfide; lower-grade ores are concentrated by froth flotation, while higher-grade ores are heated to 500–600 °C, the temperature at which stibnite melts and separates from the gangue minerals. Antimony can be isolated from the crude antimony sulfide by reduction with scrap iron:[47]

+ 3 Fe → 2 Sb + 3 FeS

The sulfide is converted to an oxide; the product is then roasted, sometimes for the purpose of vaporizing the volatile antimony(III) oxide, which is recovered.[48] This material is often used directly for the main applications, impurities being arsenic and sulfide.[49][50] Antimony is isolated from the oxide by a carbothermal reduction:[47][49]

2 Sb
+ 3 C → 4 Sb + 3 CO

The lower-grade ores are reduced in blast furnaces while the higher-grade ores are reduced in reverberatory furnaces.[47]

Supply risk and critical mineral rankings[edit]

Antimony has consistently been ranked high in European and US Risk Lists concerning criticality of the element indicating the relative risk to the supply of chemical elements or element groups required to maintain the current economy and lifestyle.

With most of the antimony imported into Europe and the US coming from China, Chinese production is critical to supply. As China is revising and increasing environmental control standards, Antimony production is becoming increasingly restricted. Additionally Chinese export quotas for Antimony have been decreasing in the past years. These two factors increase supply risk for both Europe and US.


According to the BGS Risk List 2015, Antimony is ranked second highest (after rare earth elements) on the relative supply risk index.[51] This indicates that it has currently the second highest supply risk for chemical elements or element groups which are of economic value to the British economy and lifestyle. Furthermore, antimony was identified as one of 20 critical raw materials for the EU in a report published in 2014 (which revised the initial report published in 2011). As seen in Figure xxx Antimony maintains high supply risk relative to its economic importance. 92% of the Antimony is imported from China, which is a significantly high concentration of production.[52]


Much analysis has been conducted in the U.S. toward defining which metals should be called strategic or critical to the nation's security. Exact definitions do not exist, and views as to what constitutes a strategic or critical mineral to U.S. security diverge.[53]

In 2015, no antimony was mined in the U.S. The metal is imported from foreign countries. From 2011-2014 68% of America's antimony came from China, 14% from India, 4% from Mexico, and 14% from other sources. There are no government stockpiles in place currently.

The U.S. “Subcommittee on Critical and Strategic Mineral Supply Chains” has screened 78 mineral resources from 1996-2008. It found that a small subset of minerals including antimony has fallen into the category of potentially critical minerals consistently. In the future, a second assessment will be made of the found subset of minerals to identify which should be defined of significant risk and critical to U.S. interests.[54]


About 60% of antimony is consumed in flame retardants, and 20% is used in alloys for batteries, plain bearings, and solders.[47]

Flame retardants[edit]

Antimony is mainly used in the trioxide for flame-proofing compounds, always in combination with halogenated flame retardants except in halogen-containing polymers. The flame retarding effect of antimony trioxide is produced by the formation of halogenated antimony compounds,[55] which react with hydrogen atoms, and probably also with oxygen atoms and OH radicals, thus inhibiting fire.[56] Markets for these flame-retardants include children's clothing, toys, aircraft, and automobile seat covers. They are also added to polyester resins in fiberglass composites for such items as light aircraft engine covers. The resin will burn in the presence of an externally generated flame, but will extinguish when the external flame is removed.[48][57]


Antimony forms a highly useful alloy with lead, increasing its hardness and mechanical strength. For most applications involving lead, varying amounts of antimony are used as alloying metal. In lead–acid batteries, this addition improves the charging characteristics and reduces generation of unwanted hydrogen during charging.[48][58] It is used in antifriction alloys (such as Babbitt metal),[59] in bullets and lead shot, cable sheathing, type metal (for example, for linotype printing machines[60]), solder (some "lead-free" solders contain 5% Sb),[61] in pewter,[62] and in hardening alloys with low tin content in the manufacturing of organ pipes.

Other applications[edit]

Three other applications consume nearly all the rest of the world's supply.[47] One application is a stabilizer and a catalyst for the production of polyethyleneterephthalate.[47] Another is a fining agent to remove microscopic bubbles in glass, mostly for TV screens;[63] antimony ions interact with oxygen, suppressing the tendency of the latter to form bubbles.[64] The third application is pigments.[47]

Antimony is increasingly being used in semiconductors as a dopant in n-type silicon wafers[65] for diodes, infrared detectors, and Hall-effect devices. In the 1950s, the emitters and collectors of n-p-n alloy junction transistors were doped with tiny beads of a lead-antimony alloy.[66] Indium antimonide is used as a material for mid-infrared detectors.[67][68][69]

Biology and medicine have few uses for antimony. Treatments containing antimony, known as antimonials, are used as emetics.[70] Antimony compounds are used as antiprotozoan drugs. Potassium antimonyl tartrate, or tartar emetic, was once used as an anti-schistosomal drug from 1919 on. It was subsequently replaced by praziquantel.[71] Antimony and its compounds are used in several veterinary preparations, such as anthiomaline and lithium antimony thiomalate, as a skin conditioner in ruminants.[72] Antimony has a nourishing or conditioning effect on keratinized tissues in animals.

Antimony-based drugs, such as meglumine antimoniate, are also considered the drugs of choice for treatment of leishmaniasis in domestic animals. Unfortunately, besides having low therapeutic indices, the drugs have minimal penetration of the bone marrow, where some of the Leishmania amastigotes reside, and curing the disease – especially the visceral form – is very difficult.[73] Elemental antimony as an antimony pill was once used as a medicine. It could be reused by others after ingestion and elimination.[74]

Antimony(III) sulfide is used in the heads of some safety matches.[75][76] Antimony-124 is used together with beryllium in neutron sources; the gamma rays emitted by antimony-124 initiate the photodisintegration of beryllium.[77][78] The emitted neutrons have an average energy of 24 keV.[79] Antimony sulfides help to stabilize the friction coefficient in automotive brake pad materials.[80]

Antimony is used in bullets, bullet tracers,[81] paint, glass art, and as an opacifier in enamel.


The effects of antimony and its compounds on human and environmental health differ widely. The elemental antimony metal does not affect human and environmental health. Inhalation of antimony trioxide (and similar poorly soluble Sb(III) dust particles such as antimony dust) is considered harmful and suspected of causing cancer. However, these effects are only observed with female rats and after long-term exposure to high dust concentrations. The effects are hypothesized to be attributed to inhalation of poorly soluble Sb particles leading to impaired lung clearance, lung overload, inflammation and ultimately tumour formation, not to exposure to antimony ions (OECD, 2008). Antimony chlorides are corrosive to skin. The effects of antimony are not comparable to arsenic; this might be caused by the significant differences of uptake, metabolism and excretion between arsenic and antimony.

For oral absorption, ICRP (1994) recommended values of 10% for tartar emetic and 1% for all other antimony compounds. Dermal absorption for metals is estimated at most 1% (HERAG, 2007). Inhalation absorption of antimony trioxide and other poorly soluble Sb(III) substances (such as antimony dust) is estimated at 6.8% (OECD, 2008), whereas a value <1% is derived for Sb(V) substances. Antimony(V) is not quantitatively reduced to antimony(III) in the cell, and both species exist simultaneously.

Antimony is mainly excreted from the human body via urine. Antimony and its compounds do not cause acute human health effects, with the exception of antimony potassium tartrate ("tartar emetic"), a prodrug that is intentionally used to treat leishmaniasis patients.

Prolonged skin contact with antimony dust may cause dermatitis. However, it was agreed at the European Union level that the skin rashes observed are not substance-specific, but most probably due to a physical blocking of sweat ducts (ECHA/PR/09/09, Helsinki, 6 July 2009). Antimony dust may also be explosive when dispersed in the air; when in a bulk solid it is not combustible.[82]

Antimony is incompatible with strong acids, halogenated acids, and oxidizers; when exposed to newly formed hydrogen it may form stibine (SbH3).[82]

The 8 hour time weighted average (TWA) is set at 0.5 mg/m3 by the American Conference of Governmental Industrial Hygienists and by the Occupational Safety and Health Administration (OSHA) as a legal permissible exposure limit (PEL) in the workplace. The National Institute for Occupational Safety and Health (NIOSH) has set a recommended exposure limit (REL) of 0.5 mg/m3 as an 8 hour TWA.[82] Antimony compounds are used as catalysts for polyethylene terephthalate (PET) production. Some studies report minor antimony leaching from PET bottles into liquids, but levels are below drinking water guidelines. Antimony concentrations in fruit juice concentrates were somewhat higher (up to 44.7 µg/L of antimony), but juices do not fall under the drinking water regulations. The drinking water guidelines are:

The TDI proposed by WHO is 6 µg antimony per kilogram of body weight.[85] The IDLH (immediately dangerous to life and health) value for antimony is 50 mg/m3.[82]

See also[edit]


  1. ^ Already in 1710 Wilhelm Gottlob Freiherr von Leibniz, after careful inquiry, concluded the work was spurious, there was no monk named Basilius Valentinus, and the book's author was its ostensible editor, Johann Thölde (c. 1565 – c. 1624). Professional historians now agree the Currus Triumphalis ... was written after the middle of the 16th century and Thölde was likely its author.[25]


  1. ^ Standard Atomic Weights 2013. Commission on Isotopic Abundances and Atomic Weights
  2. ^ Lide, D. R., ed. (2005). "Magnetic susceptibility of the elements and inorganic compounds". CRC Handbook of Chemistry and Physics (PDF) (86th ed.). Boca Raton (FL): CRC Press. ISBN 0-8493-0486-5. 
  3. ^ Weast, Robert (1984). CRC, Handbook of Chemistry and Physics. Boca Raton, Florida: Chemical Rubber Company Publishing. pp. E110. ISBN 0-8493-0464-4. 
  4. ^ David Kimhi's Commentary on Jeremiah 4:30 and I Chronicles 29:2; Hebrew: פוך/כְּחֻל, Aramaic: כּוּחְלִי/צדידא; Arabic: كحل, and which can also refer to Antimony trisulfide. See also Z. Dori, Antimony and Henna (Heb. הפוך והכופר), Jerusalem 1983 (Hebrew).
  5. ^ a b c d e f g h i Wiberg, Egon; Wiberg, Nils & Holleman, Arnold Frederick (2001). Inorganic chemistry. Academic Press. ISBN 0-12-352651-5. 
  6. ^ "Metals Used in Coins and Medals". 
  7. ^ a b c "Antimony" in Kirk-Othmer Encyclopedia of Chemical Technology, 5th ed. 2004. ISBN 978-0-471-48494-3
  8. ^ a b Wang, Chung Wu (1919). "The Chemistry of Antimony". Antimony: Its History, Chemistry, Mineralogy, Geology, Metallurgy, Uses, Preparation, Analysis, Production and Valuation with Complete Bibliographies (PDF). London, United Kingdom: Charles Geiffin and Co. Ltd. pp. 6–33. 
  9. ^ Norman, Nicholas C (1998). Chemistry of arsenic, antimony, and bismuth. pp. 50–51. ISBN 978-0-7514-0389-3. 
  10. ^ Georges, Audi; Bersillon, O.; Blachot, J.; Wapstra, A. H. (2003). "The NUBASE Evaluation of Nuclear and Decay Properties". Nuclear Physics A. Atomic Mass Data Center. 729: 3–128. Bibcode:2003NuPhA.729....3A. doi:10.1016/j.nuclphysa.2003.11.001. 
  11. ^ a b c d "Mineral Commodity Summaries: Antimony" (PDF). United States Geological Survey. Retrieved 1 January 2016. 
  12. ^ a b Greenwood, N. N.; & Earnshaw, A. (1997). Chemistry of the Elements (2nd Edn.), Oxford: Butterworth-Heinemann. ISBN 0-7506-3365-4.
  13. ^ Reger, Daniel L.; Goode, Scott R. & Ball, David W. (2009). Chemistry: Principles and Practice (3rd ed.). Cengage Learning. p. 883. ISBN 0-534-42012-5. 
  14. ^ a b House, James E. (2008). Inorganic chemistry. Academic Press. p. 502. ISBN 0-12-356786-6. 
  15. ^ a b Godfrey, S. M.; McAuliffe, C. A.; Mackie, A. G. & Pritchard, R. G. (1998). Norman, Nicholas C., ed. Chemistry of arsenic, antimony, and bismuth. Springer. ISBN 0-7514-0389-X. 
  16. ^ Long, G.; Stevens, J. G.; Bowen, L. H.; Ruby, S. L. (1969). "The oxidation number of antimony in antimony pentasulfide". Inorganic and Nuclear Chemistry Letters. 5: 21. doi:10.1016/0020-1650(69)80231-X. 
  17. ^ Lees, R.; Powell, A.; Chippindale, A. (2007). "The synthesis and characterisation of four new antimony sulphides incorporating transition-metal complexes". Journal of Physics and Chemistry of Solids. 68 (5–6): 1215. Bibcode:2007JPCS...68.1215L. doi:10.1016/j.jpcs.2006.12.010. 
  18. ^ Kahlenberg, Louis (2008). Outlines of Chemistry – A Textbook for College Students. READ BOOKS. pp. 324–325. ISBN 1-4097-6995-X. 
  19. ^ Elschenbroich, C. "Organometallics" (2006) Wiley-VCH: Weinheim. ISBN 3-527-29390-6
  20. ^ Shortland, A. J. (2006). "Application of Lead Isotope Analysis to a Wide Range of Late Bronze Age Egyptian Materials". Archaeometry. 48 (4): 657. doi:10.1111/j.1475-4754.2006.00279.x. 
  21. ^ a b c d Moorey, P. R. S. (1994). Ancient Mesopotamian Materials and Industries: the Archaeological Evidence. New York: Clarendon Press. p. 241. ISBN 978-1-57506-042-2. 
  22. ^ a b c d Mellor, Joseph William (1964). "Antimony". A comprehensive treatise on inorganic and theoretical chemistry. 9. p. 339. 
  23. ^ Pliny, Natural history, 33.33; W.H.S. Jones, the Loeb Classical Library translator, supplies a note suggesting the identifications.
  24. ^ Vannoccio Biringuccio, De la Pirotechnia (Venice (Italy): Curtio Navo e fratelli, 1540), Book 2, chapter 3: Del antimonio & sua miniera, Capitolo terzo (On antimony and its ore, third chapter), pp. 27-28. [Note: Only every second page of this book is numbered, so the relevant passage is to be found on the 74th and 75th pages of the text.] (in Italian)
  25. ^ Priesner, Claus; Figala, Karin, eds. (1998). Alchemie. Lexikon einer hermetischen Wissenschaft (in German). München: C.H. Beck. 
  26. ^ s.v. "Basilius Valentinus." Harold Jantz was perhaps the only modern scholar to deny Thölde's authorship, but he too agrees the work dates from after 1550: see his catalogue of German Baroque literature.
  27. ^ Weeks, Mary Elvira (1932). "The discovery of the elements. II. Elements known to the alchemists". Journal of Chemical Education. 9: 11. Bibcode:1932JChEd...9...11W. doi:10.1021/ed009p11. 
  28. ^ "Native antimony". 
  29. ^ Klaproth, M. (1803). "XL. Extracts from the third volume of the analyses". Philosophical Magazine 1. 17 (67): 230. doi:10.1080/14786440308676406. 
  30. ^ a b Harper, Douglas. "antimony". Online Etymology Dictionary. 
  31. ^ Fernando, Diana (1998). Alchemy : an illustrated A to Z. Blandford.  Fernando even derives it from the story of how "Basil Valentine" and his fellow monastic alchemists poisoned themselves by working with antimony; antimonium is found two centuries before his time. "Popular etymology" from OED; as for antimonos, the pure negative would be more naturally expressed by a- "not".
  32. ^ Lippman, pp. 643–5
  33. ^ Lippman, p. 642, writing in 1919, says "zuerst".
  34. ^ Meyerhof as quoted in Sarton, asserts that ithmid or athmoud became corrupted in the medieval "traductions barbaro-latines".; the OED asserts some Arabic form is the origin, and if ithmid is the root, posits athimodium, atimodium, atimonium, as intermediate forms.
  35. ^ Endlich, p. 28; one of the advantages of as-stimmi would be that it has a whole syllable in common with antimonium.
  36. ^ Endlich, F. M. (1888). "On Some Interesting Derivations of Mineral Names". The American Naturalist. 22 (253): 21–32. doi:10.1086/274630. JSTOR 2451020. 
  37. ^ In his long article on chemical reactions and nomenclature – Jöns Jacob Berzelius, "Essay on the cause of chemical proportions, and on some circumstances relating to them: together with a short and easy method of expressing them," Annals of Philosophy, vol. 2, pages 443–454 (1813) and vol. 3, pages 51–62, 93–106, 244–255, 353–364 (1814) – on page 52, Berzelius lists the symbol for antimony as "St"; however, starting on page 248, Berzelius subsequently uses the symbol "Sb" for antimony.
  38. ^ Albright, W. F. (1918). "Notes on Egypto-Semitic Etymology. II". The American Journal of Semitic Languages and Literatures. 34 (4): 215–255 [230]. doi:10.1086/369866. JSTOR 528157. 
  39. ^ Sarton, George (1935). Translated by Max Meyerhof. "Review of Al-morchid fi'l-kohhl, ou Le guide d'oculistique". Isis (in French). 22 (2): 539–542 [541]. doi:10.1086/346926. JSTOR 225136.  quotes Meyerhof, the translator of the book he is reviewing.
  40. ^ LSJ, s.v., vocalisation, spelling, and declension vary; Endlich, p. 28; Celsus, 6.6.6 ff; Pliny Natural History 33.33; Lewis and Short: Latin Dictionary. OED, s. "antimony".
  41. ^ Peng, J.; Hu, R.-Z.; Burnard, P. G. (2003). "Samarium–neodymium isotope systematics of hydrothermal calcites from the Xikuangshan antimony deposit (Hunan, China): the potential of calcite as a geochronometer". Chemical Geology. 200: 129. doi:10.1016/S0009-2541(03)00187-6. 
  42. ^ "United States Geological Mineral Commodity Summary" (PDF). 
  43. ^ "Environmental Protection Law of the People's Republic of China" (PDF). 24 April 2014. 
  44. ^ "U.S. Geological Survey, Mineral Commodity Summaries: Antimony" (PDF). 1 January 2016. 
  45. ^ "Study of the Antimony market by Roskill Consulting Group" (PDF). 
  46. ^ a b Antimony Uses, Production and Prices Primer Archived 25 October 2012 at the Wayback Machine..
  47. ^ a b c d e f g Butterman, C.; Carlin, Jr., J. F. (2003). "Mineral Commodity Profiles: Antimony" (PDF). United States Geological Survey. 
  48. ^ a b c Grund, Sabina C.; Hanusch, Kunibert; Breunig, Hans J.; Wolf, Hans Uwe (2006) "Antimony and Antimony Compounds" in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim. doi: 10.1002/14356007.a03_055.pub2
  49. ^ a b Norman, Nicholas C (1998). Chemistry of arsenic, antimony, and bismuth. p. 45. ISBN 978-0-7514-0389-3. 
  50. ^ Wilson, N. J.; Craw, D.; Hunter, K. (2004). "Antimony distribution and environmental mobility at an historic antimony smelter site, New Zealand". Environmental Pollution. 129 (2): 257–66. doi:10.1016/j.envpol.2003.10.014. PMID 14987811. 
  51. ^ "MineralsUK Risk List 2015". 
  52. ^ "Review of the list of critical raw materials for the EU and the implementation of the Raw Materials Initiative". 
  53. ^ "American Resources Policy Network Report" (PDF). 
  54. ^ "Critical Raw Materials". 
  55. ^ Weil, Edward D.; Levchik, Sergei V. (4 June 2009). "Antimony trioxide and Related Compounds". Flame retardants for plastics and textiles: Practical applications. ISBN 978-3-446-41652-9. 
  56. ^ Hastie, John W. (1973). "Mass spectrometric studies of flame inhibition: Analysis of antimony trihalides in flames". Combustion and Flame. 21: 49. doi:10.1016/0010-2180(73)90006-0. 
  57. ^ Weil, Edward D.; Levchik, Sergei V. (4 June 2009). Flame retardants for plastics and textiles: Practical applications. pp. 15–16. ISBN 978-3-446-41652-9. 
  58. ^ Kiehne, Heinz Albert (2003). "Types of Alloys". Battery Technology Handbook. CRC Press. pp. 60–61. ISBN 978-0-8247-4249-2. 
  59. ^ Williams, Robert S. (2007). Principles of Metallography. Read books. pp. 46–47. ISBN 978-1-4067-4671-6. 
  60. ^ Holmyard, E. J. (2008). Inorganic Chemistry – A Textbooks for Colleges and Schools. Read Books. pp. 399–400. ISBN 978-1-4437-2253-7. 
  61. ^ Ipser, H.; Flandorfer, H.; Luef, Ch.; Schmetterer, C.; Saeed, U. (2007). "Thermodynamics and phase diagrams of lead-free solder materials". Journal of Materials Science: Materials in Electronics. 18 (1–3): 3–17. doi:10.1007/s10854-006-9009-3. 
  62. ^ Hull, Charles (1992). Pewter. Osprey Publishing. pp. 1–5. ISBN 978-0-7478-0152-8. 
  63. ^ De Jong, Bernard H. W. S.; Beerkens, Ruud G. C.; Van Nijnatten, Peter A. (2000). "Glass". Ullmann's Encyclopedia of Industrial Chemistry. doi:10.1002/14356007.a12_365. ISBN 3-527-30673-0. 
  64. ^ Yamashita, H.; Yamaguchi, S.; Nishimura, R.; Maekawa, T. (2001). "Voltammetric Studies of Antimony Ions in Soda-lime-silica Glass Melts up to 1873 K" (PDF). Analytical Sciences. 17 (1): 45–50. doi:10.2116/analsci.17.45. PMID 11993676. 
  65. ^ O'Mara, William C.; Herring, Robert B.; Hunt, Lee Philip (1990). Handbook of semiconductor silicon technology. William Andrew. p. 473. ISBN 978-0-8155-1237-0. 
  66. ^ Maiti, C. K. (2008). Selected Works of Professor Herbert Kroemer. World Scientific, 2008. p. 101. ISBN 978-981-270-901-1. 
  67. ^ Committee On New Sensor Technologies: Materials And Applications, National Research Council (U.S.) (1995). Expanding the vision of sensor materials. p. 68. ISBN 978-0-309-05175-0. 
  68. ^ Kinch, Michael A (2007). Fundamentals of infrared detector materials. p. 35. ISBN 978-0-8194-6731-7. 
  69. ^ Willardson, Robert K & Beer, Albert C (1970). Infrared detectors. p. 15. ISBN 978-0-12-752105-3. 
  70. ^ Russell, Colin A. (2000). "Antimony's Curious History". Notes and Records of the Royal Society of London. 54 (1): 115–116. doi:10.1098/rsnr.2000.0101. JSTOR 532063. 
  71. ^ Harder, A. (2002). "Chemotherapeutic approaches to schistosomes: Current knowledge and outlook". Parasitology Research. 88 (5): 395–7. doi:10.1007/s00436-001-0588-x. PMID 12049454. 
  72. ^ Kassirsky, I. A.; Plotnikov, N. N. (1 August 2003). Diseases of Warm Lands: A Clinical Manual. pp. 262–265. ISBN 978-1-4102-0789-0. 
  73. ^ Organisation Mondiale de la Santé (1995). Drugs used in parasitic diseases. pp. 19–21. ISBN 978-92-4-140104-3. 
  74. ^ McCallum, R. I. (1999). Antimony in medical history: an account of the medical uses of antimony and its compounds since early times to the present. Pentland Press. ISBN 1-85821-642-7. 
  75. ^ Stellman, Jeanne Mager (1998). Encyclopaedia of Occupational Health and Safety: Chemical, industries and occupations. p. 109. ISBN 978-92-2-109816-4. 
  76. ^ Lalovic, M.; Werle, H. (1970). "The energy distribution of antimonyberyllium photoneutrons". Journal of Nuclear Energy. 24 (3): 123. Bibcode:1970JNuE...24..123L. doi:10.1016/0022-3107(70)90058-4. 
  77. ^ Ahmed, Syed Naeem (2007). Physics and engineering of radiation detection. p. 51. ISBN 978-0-12-045581-2. 
  78. ^ Schmitt, H (1960). "Determination of the energy of antimony-beryllium photoneutrons". Nuclear Physics. 20: 220. Bibcode:1960NucPh..20..220S. doi:10.1016/0029-5582(60)90171-1. 
  79. ^ Jang, H & Kim, S. (2000). "The effects of antimony trisulfide Sb S and zirconium silicate in the automotive brake friction material on friction". Journal of Wear. doi:10.1016/s0043-1648(00)00314-8. 
  80. ^ Randich, Erik; Duerfeldt, Wayne; McLendon, Wade; Tobin, William (2002). "A metallurgical review of the interpretation of bullet lead compositional analysis". Forensic Science International. 127 (3): 174–91. doi:10.1016/S0379-0738(02)00118-4. PMID 12175947. 
  81. ^ a b c d "NIOSH Pocket Guide to Chemical Hazards #0036". National Institute for Occupational Safety and Health (NIOSH). 
  82. ^ Wakayama, Hiroshi (2003) "Revision of Drinking Water Standards in Japan", Ministry of Health, Labor and Welfare (Japan); Table 2, p. 84
  83. ^ Shotyk, W.; Krachler, M.; Chen, B. (2006). "Contamination of Canadian and European bottled waters with antimony from PET containers". Journal of Environmental Monitoring. 8 (2): 288–92. doi:10.1039/b517844b. PMID 16470261. 
  84. ^ Guidelines for Drinking-water Quality (PDF) (4th ed.). World Health Organization. 2011. p. 314. ISBN 978-92-4-154815-1. 


External links[edit]