Approximation property

From Wikipedia, the free encyclopedia
Jump to: navigation, search
The construction of a Banach space without the approximation property earned Per Enflo a live goose in 1972, which had been promised by Stanisław Mazur (left) in 1936.[1]

In mathematics, a Banach space is said to have the approximation property (AP), if every compact operator is a limit of finite-rank operators. The converse is always true.

Every Hilbert space has this property. There are, however, Banach spaces which do not; Per Enflo published the first counterexample in a 1973 article. However, a lot of work in this area was done by Grothendieck (1955).

Later many other counterexamples were found. The space of bounded operators on \ell^2 does not have the approximation property (Szankowski). The spaces \ell^p for p\neq 2 and c_0 (see Sequence space) have closed subspaces that do not have the approximation property.


A locally convex topological vector space X is said to have the approximation property, if the identity map can be approximated, uniformly on precompact sets, by continuous linear maps of finite rank.[2] If X is a Banach space this requirement becomes that for every compact set K\subset X and every \varepsilon>0, there is an operator T\colon X\to X of finite rank so that \|Tx-x\|\leq\varepsilon, for every x \in K.

Some other flavours of the AP are studied:

Let X be a Banach space and let 1\leq\lambda<\infty. We say that X has the \lambda-approximation property (\lambda-AP), if, for every compact set K\subset X and every \varepsilon>0, there is an operator T\colon X \to X of finite rank so that \|Tx - x\|\leq\varepsilon, for every x \in K, and \|T\|\leq\lambda.

A Banach space is said to have bounded approximation property (BAP), if it has the \lambda-AP for some \lambda.

A Banach space is said to have metric approximation property (MAP), if it is 1-AP.

A Banach space is said to have compact approximation property (CAP), if in the definition of AP an operator of finite rank is replaced with a compact operator.


  • Every projective limit of Hilbert spaces, as well as any subspace of such a projective limit, possesses the approximation property.[3]
    • Hence every nuclear space possesses the approximation property.
  • Every subspace of an arbitrary product of Hilbert spaces possesses the approximation property.[4]
  • Every separable Frechet space that contains a Schauder basis possesses the approximation property.[5]
  • Every space with a Schauder basis has the AP (we can use the projections associated to the base as the T's in the definition), thus a lot of spaces with the AP can be found. For example, the \ell^p spaces, or the symmetric Tsirelson space.


  • Bartle, R. G. (1977). "MR0402468 (53 #6288) (Review of Per Enflo's "A counterexample to the approximation problem in Banach spaces" Acta Mathematica 130 (1973), 309–317)". Mathematical Reviews. MR 402468. 
  • Enflo, P.: A counterexample to the approximation property in Banach spaces. Acta Math. 130, 309–317(1973).
  • Grothendieck, A.: Produits tensoriels topologiques et espaces nucleaires. Memo. Amer. Math. Soc. 16 (1955).
  • Halmos, Paul R. (1978). "Schauder bases". American Mathematical Monthly 85 (4): 256–257. doi:10.2307/2321165. JSTOR 2321165. MR 488901. 
  • Paul R. Halmos, "Has progress in mathematics slowed down?" Amer. Math. Monthly 97 (1990), no. 7, 561—588. MR 1066321
  • William B. Johnson "Complementably universal separable Banach spaces" in Robert G. Bartle (ed.), 1980 Studies in functional analysis, Mathematical Association of America.
  • Kwapień, S. "On Enflo's example of a Banach space without the approximation property". Séminaire Goulaouic–Schwartz 1972—1973: Équations aux dérivées partielles et analyse fonctionnelle, Exp. No. 8, 9 pp. Centre de Math., École Polytech., Paris, 1973. MR 407569
  • Lindenstrauss, J.; Tzafriri, L.: Classical Banach Spaces I, Sequence spaces, 1977.
  • Nedevski, P.; Trojanski, S. (1973). "P. Enflo solved in the negative Banach's problem on the existence of a basis for every separable Banach space". Fiz.-Mat. Spis. Bulgar. Akad. Nauk. 16 (49): 134–138. MR 458132. 
  • Pietsch, Albrecht (2007). History of Banach spaces and linear operators. Boston, MA: Birkhäuser Boston, Inc. pp. xxiv+855 pp. ISBN 978-0-8176-4367-6. MR 2300779. 
  • Karen Saxe, Beginning Functional Analysis, Undergraduate Texts in Mathematics, 2002 Springer-Verlag, New York.
  • Schaefer, Helmuth H.; Wolff, M.P. (1999). Topological Vector Spaces. GTM 3. New York: Springer-Verlag. ISBN 9780387987262. 
  • Singer, Ivan. Bases in Banach spaces. II. Editura Academiei Republicii Socialiste România, Bucharest; Springer-Verlag, Berlin-New York, 1981. viii+880 pp. ISBN 3-540-10394-5. MR 610799
  1. ^ Megginson, Robert E. An Introduction to Banach Space Theory p. 336
  2. ^ Schaefer p. 108
  3. ^ Schaefer p. 110
  4. ^ Schaefer p. 109
  5. ^ Schaefer p. 115