Argumentum a fortiori

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search

Argumentum a fortiori (UK: /ˈɑː fɔːrtiˈri/,[1] US: /ˈ fɔːrʃiˈɔːr/; Latin: "from a/the stronger [thing]") is a form of argumentation that draws upon existing confidence in a proposition to argue in favor of a second proposition that is held to be implicit in the first. The second proposition may be considered weaker, and therefore the arguer utilizes the former as the stronger proposition from which the second proposition is deduced.


  • If a person is dead (the stronger reason), then one can with equal or greater certainty argue a fortiori that the person is not breathing. "Being dead" trumps other arguments that might be made to show that the person is dead, such as "he is no longer breathing"; therefore, "he is no longer breathing" is an extrapolation from his being dead and is a derivation of this strong argument.
  • If driving 10 mph over the speed limit is punishable by a fine of $50, it can be inferred a fortiori that driving 20 mph over the speed limit is also punishable by a fine of at least $50.
  • If a teacher refuses to add 5 points to a student's grade, on the grounds that the student does not deserve an additional 5 points, it can be inferred a fortiori that the teacher will also refuse to raise the student's grade by 10 points.


In the English language, the phrase a fortiori is most often used as an adverbial phrase meaning "by even greater force of logic" or "all the more so".[citation needed]

In Garner's Modern American Usage , Bryan A. Garner explained writers sometimes use a fortiori as an adjective as in "a usage to be resisted." Garner provides this example:"Clearly, if laws depend so heavily on public acquiescence, the case of conventions is an a fortiori [read even more compelling] one."[2]

A fortiori arguments are regularly used in Jewish law under the name kal va-chomer,[3] literally "mild and severe", the mild case being the one we know about, while trying to infer about the more severe case.

In ancient Indian logic (nyaya), an inference derived from an a fortiori postulation is known as kaimutika or kaimutya nyaya, from the words kim uta meaning "even more so."[citation needed]

In Islamic jurisprudence, a fortiori arguments are proved utilising the methods used in qiyas (reasoning by analogy).[4]


A maiore ad minus[edit]

In logic, a maiore ad minus describes a simple and obvious inference from a claim about a stronger entity, greater quantity, or general class to one about a weaker entity, smaller quantity, or specific member of that class:

  • From general to particular ("What holds for all X also holds for one particular X")
  • From greater to smaller ("If a door is big enough for a person two metres high, then a shorter person may also come through"; "If a canister may store ten litres of petrol, then it may also store three litres of petrol.")
  • From the whole to the part ("If the law permits a testator to revoke the entirety of a bequest by destroying or altering the document expressing it, then the law also permits a testator to revoke the portion of a bequest contained in a given portion of a document by destroying or altering that portion of the document.")
  • From stronger to weaker ("If one may safely use a rope to tow a truck [in the American usage], one may also use it to tow a car.")

A minore ad maius[edit]

The reverse, less known and less frequently applicable argument is a minore ad maius, which denotes an inference from smaller to bigger.

In law[edit]

“Argumentum a maiori ad minus” (from the greater to the smaller) –  works in two ways:
  • “who may more, all the more so may less” and relates to the statutory provisions that permit to do something
  • “who is ordered more, all the more so, is ordered less” and relates to the stautory provisions that order to do something
“Argumentum a minori ad maius”  (from the smaller to the greater) – works in the way:

See also[edit]


  1. ^ Morwood, James (1998). A Dictionary of Latin Words and Phrases. Oxford: Oxford University Press. pp. x–xii. ISBN 978-0-19-860109-8.
  2. ^ Garner, Bryan A. (2009). Garner's Modern American Usage (3rd ed.). Oxford: Oxford University Press. p. 28. ISBN 978-0-19-538275-4.
  3. ^ Abramowitz, Jack. "Torah Methodology #1 – Kal v'Chomer". Orthodox Union. Retrieved 20 July 2016.
  4. ^ Hallaq, Wael (2009). Sharī'a: Theory, Practice, Transformations (1st ed.). Cambridge: Cambridge University Press. p. 105. ISBN 0521678749.