Jump to content

Artificial photosynthesis

From Wikipedia, the free encyclopedia

Artificial photosynthesis is a chemical process that biomimics the natural process of photosynthesis. The term artificial photosynthesis is used loosely, referring to any scheme for capturing and then storing energy from sunlight by producing a fuel, specifically a solar fuel.[1] An advantage of artificial photosynthesis would be that the solar energy could converted and stored. By contrast, using photovoltaic cells, sunlight is converted into electricity and then converted again into chemical energy for storage, with some necessary losses of energy associated with the second conversion. The byproducts of these reactions are environmentally friendly. Artificially photosynthesized fuel would be a carbon-neutral source of energy, but it has never been demonstrated in any practical sense. The economics of artificial photosynthesis are noncompetitive.[2]


Numerous schemes have been described as artificial photosynthesis.

2 H2O → 2 H2 + O2 This scheme is the simplest form of artificial photosynthesis conceptually, but has not been demonstrated in any practicable way.

2 CO2 → 2 CO + O2 Related processes give formic acid (HCO2H): 2 H2O + 2 CO2 → 2 HCO2H + O2 Variations might produce formaldehyde or, equivalently, carbohydrates: 2 H2O + CO2 → H2CO + O2 These processes replicate natural carbon fixation.

Natural (left) versus artificial photosynthesis (right)

Because of the socio-economic implications, artificial photosynthesis is very topical, despite the many challenges.[4][5][2][6] Ideally the only inputs to produce such solar fuels would be water, carbon dioxide, and sunlight. The only by-product would be oxygen,[5][2][7] by using direct processes.[8][9][10]


Artificial photosynthesis was first anticipated by the Italian chemist Giacomo Ciamician during 1912.[11] In a lecture that was later published in Science[12] he proposed a switch from the use of fossil fuels to radiant energy provided by the sun and captured by technical photochemistry devices. In this switch he saw a possibility to lessen the difference between the rich north of Europe and poor south and ventured a guess that this switch from coal to solar energy would "not be harmful to the progress and to human happiness".[13]

During the late 1960s, Akira Fujishima discovered the photocatalytic properties of titanium dioxide, the so-called Honda-Fujishima effect, which could be used for hydrolysis.[14]

Visible light water splitting with a one piece multijunction semiconductor device (vs. UV light with titanium dioxide semiconductors) was first demonstrated and patented by William Ayers at Energy Conversion Devices during 1983.[15][16] This group demonstrated water photolysis into hydrogen and oxygen, now referred to as an "artificial leaf" with a low cost, thin film amorphous silicon multijunction sheet immersed directly in water. Hydrogen evolved on the front amorphous silicon surface decorated with various catalysts while oxygen evolved from the back side metal substrate which also eliminated the hazard of mixed hydrogen/oxygen gas evolution. A polymer membrane above the immersed device provided a path for proton transport. The higher photovoltage available from the multijunction thin film device with visible light was a major advance over previous photolysis attempts with UV or other single junction semiconductor photoelectrodes. The group's patent also lists several other semiconductor multijunction compositions in addition to amorphous silicon.

Since the 1990's, much has been learned about catalysts hydrogen evolution reaction[17] and oxygen evolution reaction. Unfortunately, no practical system has been demonstrated despite intense efforts.[18][19]

Since the 1990's, much has been learned about catalysts hydrogen evolution reaction and oxygen evolution reaction.[20] Unfortunately, no practical system has been demonstrated despite intense efforts.[21]


Catalytic triad[edit]

A triad assembly, with a photosensitizer (P) linked in tandem to a water oxidation catalyst (D) and a hydrogen evolving catalyst (A). Electrons flow from D to A when catalysis occurs.

Some concepts for artificial photosynthesis consist of distinct components,[22] which are inspired by natural photosynthesis:[23][24]

These processes could be replicated by a triad assembly, which could oxidize water at one catalyst, reduce protons at another, and have a photosensitizer molecule to power the whole system[25]


Some catalysts for solar fuel cells are envisioned to produce hydrogen.[23]

1) A homogeneous system is one such that catalysts are not compartmentalized, that is, components are present in the same compartment. This means that hydrogen and oxygen are produced in the same location. This can be a drawback, since they compose an explosive mixture, demanding gas product separation. Also, all components must be active in approximately the same conditions (e.g., pH). 2) A heterogeneous system has two separate electrodes, an anode and a cathode, making possible the separation of oxygen and hydrogen production. Furthermore, different components do not necessarily need to work in the same conditions. However, the increased complexity of these systems makes them harder to develop and more expensive.[26]

Selected catalysts[edit]

Many catalysts have been evaluated for both the O2-evolution and the reductive sides of the process. Those listed below, which includes both oxidizer and reducers, are not practical, but illustrative:

[36] Similar to natural photosynthesis, such artificial leaves can use a tandem of light absorbers for overall water splitting or CO2 reduction. These integrated systems can be assembled on lightweight, flexible substrates, resulting in floating devices resembling lotus leaves.[37]

  • Metal-Organic Framework (MOF)-based materials have been shown to be a highly promising candidate for water oxidation with first row transition metals.[38][39] The stability and tunability of this system is projected to be highly beneficial for future development.[40]

Catalyst stability[edit]

Catalysts for artificial photosynthesis are expected to effect turn over numbers in the millions. Catalysts often corrode in water, especially when irradiated. Thus, they may be less stable than photovoltaics over long periods of time. Hydrogen catalysts are very sensitive to oxygen, being inactivated or degraded in its presence; also, photodamage may occur over time.[23][41]

Research centers[edit]


The Swedish Consortium for Artificial Photosynthesis, the first of its kind, was established during 1994 as a collaboration between groups of three universities, Lund, Uppsala and Stockholm, being presently active around Lund and the Ångström Laboratories in Uppsala.[42] The consortium was built with a multidisciplinary approach to focus on learning from natural photosynthesis and applying this knowledge in biomimetic systems.[24]


During 2010, the United States Department of Energy established the Joint Center for Artificial Photosynthesis,[43] with the aim of finding a cost-effective method to produce fuels using only sunlight, water, and carbon-dioxide as inputs.[44]


Mitsubishi Chemical Holdings was reported to be developing its own artificial photosynthesis research by using sunlight, water and carbon dioxide to "create the carbon building blocks from which resins, plastics and fibers can be synthesized".[45] This was confirmed with the establishment of the KAITEKI Institute later that year, with carbon dioxide reduction through artificial photosynthesis as one of the main goals.[46][47]


Leading experts in the field have supported a proposal for a Global Project on Artificial Photosynthesis as a combined energy security and climate change solution.[48] Conferences on this theme have been held at Lord Howe Island during 2011,[49] at Chicheley Hall in the UK in 2014[50] and at Canberra and Lord Howe island during 2016.[51]

Various components[edit]

Hydrogen catalysts[edit]

Hydrogen is the simplest solar fuel. Its formation involves only the transference of two electrons to two protons:

2 e + 2 H+ → H2

The hydrogenase enzymes effect this conversion[23][52][53]

Dirhodium photocatalyst[54] and cobalt catalysts.[23][55]

Water-oxidizing catalysts[edit]

Water oxidation is a more complex chemical reaction than proton reduction. In nature, the oxygen-evolving complex performs this reaction by accumulating reducing equivalents (electrons) in a manganese-calcium cluster within photosystem II (PS II), then delivering them to water molecules, with the resulting production of molecular oxygen and protons:

2 H2O → O2 + 4 H+ + 4e

Without a catalyst (natural or artificial), this reaction is very endothermic, requiring high temperatures (at least 2500 K).[10]

The exact structure of the oxygen-evolving complex has been hard to determine experimentally.[56] As of 2011, the most detailed model was from a 1.9 Å resolution crystal structure of photosystem II.[57] The complex is a cluster containing four manganese and one calcium ions, but the exact location and mechanism of water oxidation within the cluster is unknown. Nevertheless, bio-inspired manganese and manganese-calcium complexes have been synthesized, such as [Mn4O4] cubane-type clusters, some with catalytic activity.[58]

Some ruthenium complexes, such as the dinuclear μ-oxo-bridged "blue dimer" (the first of its kind to be synthesized), are capable of light-driven water oxidation, thanks to being able to form high valence states.[23] In this case, the ruthenium complex acts as both photosensitizer and catalyst. This complexes and other molecular catalysts still attract researchers in the field, having different advantages such as clear structure, active site, and easy to study mechanism. One of the main challenges to overcome is their short-term stability and their effective heterogenization for applications in artificial photosynthesis devices.[59]

Many metal oxides have been found to have water oxidation catalytic activity, including ruthenium(IV) oxide (RuO2), iridium(IV) oxide (IrO2), cobalt oxides (including nickel-doped Co3O4), manganese oxide (including layered MnO2 (birnessite), Mn2O3), and a mix of Mn2O3 with CaMn2O4. Oxides are easier to obtain than molecular catalysts, especially those from relatively abundant transition metals (cobalt and manganese), but suffer from low turnover frequency and slow electron transfer properties, and their mechanism of action is hard to decipher and, therefore, to adjust.[9]


Structure of [Ru(bipy)3]2+, a broadly used photosensitizer.

Nature uses pigments, mainly chlorophylls, to absorb a broad part of the visible spectrum. Artificial systems can use either one type of pigment with a broad absorption range or combine several pigments for the same purpose.

Ruthenium polypyridine complexes, in particular tris(bipyridine)ruthenium(II) and its derivatives, have been extensively used in hydrogen photoproduction due to their efficient visible light absorption and long-lived consequent metal-to-ligand charge transfer excited state, which makes the complexes strong reducing agents.[23] Other noble metal-containing complexes used include ones with platinum, rhodium and iridium.[23]

Metal-free organic complexes have also been successfully employed as photosensitizers. Examples include eosin Y and rose bengal.[23] Pyrrole rings such as porphyrins have also been used in coating nanomaterials or semiconductors for both homogeneous and heterogeneous catalysis.[9][36]

As part of current research efforts artificial photonic antenna systems are being studied to determine efficient and sustainable ways to collect light for artificial photosynthesis. Gion Calzaferri (2009) describes one such antenna that uses zeolite L as a host for organic dyes, to mimic plant's light collecting systems.[60] The antenna is fabricated by inserting dye molecules into the channels of zeolite L. The insertion process, which takes place under vacuum and at high temperature conditions, is made possible by the cooperative vibrational motion of the zeolite framework and of the dye molecules.[61] The resulting material may be interfaced to an external device via a stopcock intermediate.[62][63]

Carbon dioxide reduction catalysts[edit]

In nature, carbon fixation is done by green plants using the enzyme RuBisCO as a part of the Calvin cycle. RuBisCO is a rather slow catalyst compared to the vast majority of other enzymes, incorporating only a few molecules of carbon dioxide into ribulose-1,5-bisphosphate per minute, but does so at atmospheric pressure and in mild, biological conditions.[64] The resulting product is further reduced and eventually used in the synthesis of glucose, which in turn is a precursor to more complex carbohydrates, such as cellulose and starch. The process consumes energy in the form of ATP and NADPH.

Artificial CO2 reduction for fuel production aims mostly at producing reduced carbon compounds from atmospheric CO2. Some transition metal polyphosphine complexes have been developed for this end; however, they usually require previous concentration of CO2 before use, and carriers (molecules that would fixate CO2) that are both stable in aerobic conditions and able to concentrate CO2 at atmospheric concentrations haven't been yet developed.[65] The simplest product from CO2 reduction is carbon monoxide (CO), but for fuel development, further reduction is needed (for example, to multi-carbon products), and a key step also needing further development is the transfer of hydride anions to CO.[65]

Photobiological production of fuels[edit]

Another area of research within artificial photosynthesis is the selection and manipulation of photosynthetic microorganisms, namely green microalgae and cyanobacteria, for the production of solar fuels. Many strains produce hydrogen naturally.[66] Algae biofuels such as butanol and methanol have been produced at various scales. This method has benefited from the development of synthetic biology,[66][67][68] Diverse biofuels have been developed, e.g., acetic acid from carbon dioxide using "cyborg bacteria".[69]

Some solar cells are capable of splitting water into oxygen and hydrogen, approximately ten times more efficient than natural photosynthesis.[70][71] Sun Catalytix, the startup based on the artificial leaf, stated that it will not be scaling up the prototype as the device offers few savings over other ways to make hydrogen from sunlight.[72]

Some photoautotrophic microorganisms can, under certain conditions, produce hydrogen. Nitrogen-fixing microorganisms, such as filamentous cyanobacteria, possess the enzyme nitrogenase, responsible for conversion of atmospheric N2 into ammonia; molecular hydrogen is a byproduct of this reaction, and is many times not released by the microorganism, but rather taken up by a hydrogen-oxidizing (uptake) hydrogenase. One way of forcing these organisms to produce hydrogen is then to annihilate uptake hydrogenase activity. This has been done on a strain of Nostoc punctiforme: one of the structural genes of the NiFe uptake hydrogenase was inactivated by insertional mutagenesis, and the mutant strain showed hydrogen evolution under illumination.[73]

Many of these photoautotrophs also have bidirectional hydrogenases, which can produce hydrogen under certain conditions. However, other energy-demanding metabolic pathways can compete with the necessary electrons for proton reduction, decreasing the efficiency of the overall process; also, these hydrogenases are very sensitive to oxygen.[66]

Several carbon-based biofuels have also been produced using cyanobacteria, such as 1-butanol.[74]

Synthetic biology techniques are predicted to be useful for this topic. Microbiological and enzymatic engineering have the potential of improving enzyme efficiency and robustness, as well as constructing new biofuel-producing metabolic pathways in photoautotrophs that previously lack them, or improving on the existing ones.[66][74] Another topic being developed is the optimization of photobioreactors for commercial application.[75]

Food production[edit]

Researchers have achieved controlled growth of diverse foods in the dark via solar energy and electrocatalysis-based artificial photosynthesis. It may become a way to increase energy efficiency of food production and reduce its environmental impacts.[76][77] However, it is unclear if food production mechanisms based on the experimental process are viable and can be scaled.

Some advantages, disadvantages, and efficiency[edit]

A concern usually addressed in catalyst design is efficiency, in particular how much of the incident light can be used in a system in practice. This is comparable with photosynthetic efficiency, where light-to-chemical-energy conversion is measured. Photosynthetic organisms are able to collect about 50% of incident solar radiation, however the theoretical limit of photosynthetic efficiency is 4.6 and 6.0% for C3 and C4 plants respectively.[78] In reality, the efficiency of photosynthesis is much lower and is usually below 1%, with some exceptions such as sugarcane in tropical climate.[79] In contrast, the highest reported efficiency for artificial photosynthesis lab prototypes is 22.4%.[80] However, plants are efficient in using CO2 at atmospheric concentrations, something that artificial catalysts still cannot perform.[81]

See also[edit]


  1. ^ Kudo, Akihiko; Miseki, Yugo (2009). "Heterogeneous photocatalyst materials for water splitting". Chem. Soc. Rev. 38 (1): 253–278. doi:10.1039/b800489g. PMID 19088977.
  2. ^ a b c "The Difference Engine: The sunbeam solution". The Economist. 11 February 2011.
  3. ^ Barton, Emily E.; Rampulla, David M.; Bocarsly, Andrew B. (2008). "Selective Solar-Driven Reduction of CO2 to Methanol Using a Catalyzed p-GaP Based Photoelectrochemical Cell". Journal of the American Chemical Society. 130 (20): 6342–6344. doi:10.1021/ja0776327. PMID 18439010.
  4. ^ Navarro, R.M.; del Valle, F.; de la Mano, J.A. Villoria; Álvarez-Galván, M.C.; Fierro, J.L.G. (2009). Photocatalytic Water Splitting Under Visible Light: Concept and Catalysts Development. Advances in Chemical Engineering. Vol. 36. pp. 111–143. doi:10.1016/S0065-2377(09)00404-9. ISBN 9780123747631.
  5. ^ a b Styring, Stenbjörn (21 December 2011). "Artificial photosynthesis for solar fuels". Faraday Discussions. 155 (Advance Article): 357–376. Bibcode:2012FaDi..155..357S. doi:10.1039/C1FD00113B. PMID 22470985.
  6. ^ Listorti, Andrea; Durrant, James; Barber, Jim (December 2009). "Solar to Fuel". Nature Materials. 8 (12): 929–930. Bibcode:2009NatMa...8..929L. doi:10.1038/nmat2578. PMID 19935695.
  7. ^ "Artificial Photosynthesis Can Produce Food in Complete Darkness". scitechdaily.com. 25 June 2022. Retrieved 28 June 2022.
  8. ^ Gathman, Andrew. "Energy at the Speed of Light". Online Research. PennState. Archived from the original on 12 July 2012. Retrieved 16 January 2012.
  9. ^ a b c Carraro, Mauro; Sartorel, Andrea; Toma, Francesca; Puntoriero, Fausto; Scandola, Franco; Campagna, Sebastiano; Prato, Maurizio; Bonchio, Marcella (2011). Artificial Photosynthesis Challenges: Water Oxidation at Nanostructured Interfaces. Topics in Current Chemistry. Vol. 303. pp. 121–150. doi:10.1007/128_2011_136 (inactive 17 February 2024). ISBN 978-3-642-22293-1. PMID 21547686.{{cite book}}: CS1 maint: DOI inactive as of February 2024 (link)
  10. ^ a b Bockris, J.O'M.; Dandapani, B.; Cocke, D.; Ghoroghchian, J. (1985). "On the splitting of water". International Journal of Hydrogen Energy. 10 (3): 179–201. Bibcode:1985IJHE...10..179B. doi:10.1016/0360-3199(85)90025-4.
  11. ^ Armaroli, Nicola; Balzani, Vincenzo (2007). "The Future of Energy Supply: Challenges and Opportunities". Angewandte Chemie. 46 (1–2): 52–66. doi:10.1002/anie.200602373. PMID 17103469.
  12. ^ Ciamician, Giacomo (1912). "The Photochemistry of the Future". Science. 36 (926): 385–394. Bibcode:1912Sci....36..385C. doi:10.1126/science.36.926.385. PMID 17836492.
  13. ^ Balzani, Vincenzo; et al. (2008). "Photochemical Conversion of Solar Energy". ChemSusChem. 1 (1–2): 26–58. Bibcode:2008ChSCh...1...26B. doi:10.1002/cssc.200700087. PMID 18605661.
  14. ^ Fujishima, Akira; Rao, Tata N.; Tryk, Donald A. (29 June 2000). "Titanium dioxide photocatalysis". Journal of Photochemistry and Photobiology C: Photochemistry Reviews. 1 (1): 1–21. doi:10.1016/S1389-5567(00)00002-2. S2CID 73665845.
  15. ^ William Ayers, U.S. patent 4,466,869 "Photolytic Production of Hydrogen"
  16. ^ Ayers, W.M. and Cannella, V. (1984) "Tandem Amorphous Silicon Photocathodes", Proc. Int'l. Conf. on Electrodynamics and Quantum Phenomena at Interfaces, Telavi, USSR
  17. ^ Kärkäs, Markus D.; Verho, Oscar; Johnston, Eric V.; Åkermark, Björn (2014). "Artificial Photosynthesis: Molecular Systems for Catalytic Water Oxidation". Chemical Reviews. 114 (24): 11863–12001. doi:10.1021/cr400572f.
  18. ^ Ham, Rens; Nielsen, C. Jasslie; Pullen, Sonja; Reek, Joost N. H. (2023). "Supramolecular Coordination Cages for Artificial Photosynthesis and Synthetic Photocatalysis". Chemical Reviews. 123 (9): 5225–5261. doi:10.1021/acs.chemrev.2c00759. PMC 10176487. PMID 36662702.
  19. ^ Reyes Cruz, Edgar A.; Nishiori, Daiki; Wadsworth, Brian L.; Nguyen, Nghi P.; Hensleigh, Lillian K.; Khusnutdinova, Diana; Beiler, Anna M.; Moore, G. F. (2022). "Molecular-Modified Photocathodes for Applications in Artificial Photosynthesis and Solar-to-Fuel Technologies". Chemical Reviews. 122 (21): 16051–16109. doi:10.1021/acs.chemrev.2c00200. PMID 36173689.
  20. ^ Kärkäs, Markus D.; Verho, Oscar; Johnston, Eric V.; Åkermark, Björn (2014). "Artificial Photosynthesis: Molecular Systems for Catalytic Water Oxidation". Chemical Reviews. 114 (24): 11863–12001. doi:10.1021/cr400572f. PMID 25354019.
  21. ^ Ham, Rens; Nielsen, C. Jasslie; Pullen, Sonja; Reek, Joost N. H. (2023). "Supramolecular Coordination Cages for Artificial Photosynthesis and Synthetic Photocatalysis". Chemical Reviews. 123 (9): 5225–5261. doi:10.1021/acs.chemrev.2c00759. PMC 10176487. PMID 36662702.
  22. ^ Campagna, Sebastiano; Nastasi, Francesco; La Ganga, Giuseppina; Serroni, Scolastica; Santoro, Antonio; Arrigo, Antonino; Puntoriero, Fausto (2023). "Self-assembled systems for artificial photosynthesis". Physical Chemistry Chemical Physics. 25 (3): 1504–1512. Bibcode:2023PCCP...25.1504C. doi:10.1039/d2cp03655j. PMID 36448376.
  23. ^ a b c d e f g h i Andreiadis, Eugen S.; Chavarot-Kerlidou, Murielle; Fontecave, Marc; Artero, Vincent (September–October 2011). "Artificial Photosynthesis: From Molecular Catalysts for Light-driven Water Splitting to Photoelectrochemical Cells". Photochemistry and Photobiology. 87 (5): 946–964. doi:10.1111/j.1751-1097.2011.00966.x. PMID 21740444.
  24. ^ a b Hammarström, Leif; Styring, Stenbjörn (27 March 2008). "Coupled electron transfers in artificial photosynthesis". Philosophical Transactions of the Royal Society. 363 (1494): 1283–1291. doi:10.1098/rstb.2007.2225. PMC 2614099. PMID 17954432.
  25. ^ Gust, Devens; Moore, Thomas A.; Moore, Ana L. (2009). "Solar Fuels via Artificial Photosynthesis". Accounts of Chemical Research. 42 (12): 1890–1898. doi:10.1021/ar900209b. PMID 19902921.
  26. ^ Wang, Qian (24 August 2020). "Molecularly engineered photocatalyst sheet for scalable solar formate production from carbon dioxide and water" (PDF). Nature Energy. 5 (9): 703–710. Bibcode:2020NatEn...5..703W. doi:10.1038/s41560-020-0678-6. S2CID 225203917.
  27. ^ del Valle, F.; Ishikawa, A.; Domen, K. (May 2009). "Influence of Zn concentration in the activity of Cd
    solid solutions for water splitting under visible light". Catalysis Today. 143 (1–2): 51–59. doi:10.1016/j.cattod.2008.09.024.
  28. ^ Hensel, Jennifer; Wang, Gongming; Li, Yat; Zhang, Jin Z. (2010). "Synergistic Effect of CdSe Quantum Dot Sensitization and Nitrogen Doping of TiO2 Nanostructures for Photoelectrochemical Solar Hydrogen Generation". Nano Letters. 10 (2): 478–483. Bibcode:2010NanoL..10..478H. doi:10.1021/nl903217w. PMID 20102190.
  29. ^ Kanan, Matthew W.; Nocera, Daniel G. (22 August 2008). "In Situ Formation of an Oxygen-Evolving Catalyst in Neutral Water Containing Phosphate and Co2+". Science. 321 (5892): 1072–1075. Bibcode:2008Sci...321.1072K. doi:10.1126/science.1162018. PMID 18669820. S2CID 206514692.
  30. ^ Lutterman, Daniel A.; Surendranath, Yogesh; Nocera, Daniel G. (2009). "A Self-Healing Oxygen-Evolving Catalyst". Journal of the American Chemical Society. 131 (11): 3838–3839. doi:10.1021/ja900023k. PMID 19249834.
  31. ^ "Solar-Power Breakthrough: Researchers have found a cheap and easy way to store the energy made by solar power". Technologyreview.com. Retrieved 19 April 2011.
  32. ^ Kleiner, Kurt. "Electrode lights the way to artificial photosynthesis". NewScientist. Reed Business Information Ltd. Retrieved 10 January 2012.
  33. ^ "Light-Driven Hydrogen Generation System Based on Inexpensive Iron Carbonyl Complexes". AZoNano.com. AZoNetwork. 2 December 2009. Retrieved 19 April 2011.
  34. ^ Gärtner, Felix; Sundararaju, Basker; Surkus, Annette-Enrica; Boddien, Albert; Loges, Björn; Junge, Henrik; Dixneuf, Pierre H; Beller, Matthias (21 December 2009). "Light-Driven Hydrogen Generation: Efficient Iron-Based Water Reduction Catalysts". Angewandte Chemie International Edition. 48 (52): 9962–9965. doi:10.1002/anie.200905115. PMID 19937629.
  35. ^ Nann, Thomas; Ibrahim, Saad K; Woi, Pei-Meng; Xu, Shu; Ziegler, Jan; Pickett, Christopher J. (22 February 2010). "Water Splitting by Visible Light: A Nanophotocathode for Hydrogen Production". Angewandte Chemie International Edition. 49 (9): 1574–1577. doi:10.1002/anie.200906262. PMID 20140925.
  36. ^ a b Kalyanasundaram, K.; Grätzel, M. (June 2010). "Artificial photosynthesis: biomimetic approaches to solar energy conversion and storage". Current Opinion in Biotechnology. 21 (3): 298–310. doi:10.1016/j.copbio.2010.03.021. PMID 20439158.
  37. ^ Andrei, Virgil; Ucoski, Geani M.; Pornrungroj, Chanon; Uswachoke, Chawit; Wang, Qian; Achilleos, Demetra S.; Kasap, Hatice; Sokol, Katarzyna P.; Jagt, Robert A.; Lu, Haijiao; et al. (17 August 2022). "Floating perovskite-BiVO4 devices for scalable solar fuel production". Nature. 608 (7923): 518–522. Bibcode:2022Natur.608..518A. doi:10.1038/s41586-022-04978-6. PMID 35978127. S2CID 251645379.
  38. ^ Binod Nepal; Siddhartha Das (2013). "Sustained Water Oxidation by a Catalyst Cage-Isolated in a Metal–Organic Framework". Angew. Chem. Int. Ed. 52 (28): 7224–27. CiteSeerX doi:10.1002/anie.201301327. PMID 23729244.
  39. ^ Rebecca E. Hansen; Siddhartha Das (2014). "Biomimetic Di-manganese Catalyst Cage-isolated in a MOF: Robust Catalyst for Water Oxidation with Ce(IV), a Non-O-Donating Oxidant". Energy Environ. Sci. 7 (1): 317–322. doi:10.1039/C3EE43040E.
  40. ^ Chemical & Engineering News
  41. ^ Krassen, Henning; Ott, Sascha; Heberle, Joachim (2011). "In vitro hydrogen production—using energy from the sun". Physical Chemistry Chemical Physics. 13 (1): 47–57. Bibcode:2011PCCP...13...47K. doi:10.1039/C0CP01163K. PMID 21103567.
  42. ^ "Swedish Consortium for Artificial Photosynthesis". Uppsala University. Archived from the original on 20 January 2012. Retrieved 24 January 2012.
  43. ^ "Home – Joint Center for Artificial Photosynthesis". Solarfuelshub.org. Retrieved 7 November 2012.
  44. ^ "Caltech-led Team Gets up to $122 Million for Energy Innovation Hub". Caltech Media Relations. 21 July 2010. Archived from the original on 9 August 2011. Retrieved 19 April 2011.
  45. ^ "Man-made photosynthesis looking to change the world". Digitalworldtokyo.com. 14 January 2009. Retrieved 19 April 2011.
  46. ^ "The Establishment of the KAITEKI Institute Inc". CSR Environment. mitsubishi.com. Retrieved 10 January 2012.
  47. ^ "Research". The KAITEKI Institute. Retrieved 10 January 2012.
  48. ^ Faunce TA, Lubitz W, Rutherford AW, MacFarlane D, Moore GF, Yang P, Nocera DG, Moore TA, Gregory DH, Fukuzumi S, Yoon KB, Armstrong FA, Wasielewski MR, Styring S (2013). "Energy and Environment Policy Case for a Global Project on Artificial Photosynthesis". Energy and Environmental Science. 6 (3): 695–698. doi:10.1039/C3EE00063J. S2CID 97344491.
  49. ^ Towards Global Artificial Photosynthesis Lord Howe Island 2011 "Artificial Photosynthesis". Archived from the original on 28 March 2016. Retrieved 7 April 2016. published in Australian Journal of Chemistry Volume 65 Number 6 2012 as 'Artificial Photosynthesis: Energy, Nanochemistry, and Governance'
  50. ^ Do We Need a Global Project on Artificial Photosynthesis? published in Interface Focus Vol 5(3) June 2015
  51. ^ Global Artificial Photosynthesis- Breakthroughs for the Sustainocene Canberra and Lord Howe island 2016. medicalschool.anu.edu.au
  52. ^ Tard, Cédric; Pickett, Christopher J. (2009). "Structural and Functional Analogues of the Active Sites of the [Fe]-, [NiFe]-, and [FeFe]-Hydrogenases". Chemical Reviews. 109 (6): 2245–2274. doi:10.1021/cr800542q. PMID 19438209.
  53. ^ Tard, Cédric; Liu, Xiaoming; Ibrahim, Saad K.; Bruschi, Maurizio; De Gioia, Luca; Davies, Siân C.; Yang, Xin; Wang, Lai-Sheng; et al. (2005). "Synthesis of the H-cluster framework of iron-only hydrogenase". Nature. 433 (7026): 610–613. Bibcode:2005Natur.433..610T. doi:10.1038/nature03298. PMID 15703741. S2CID 4430994.
  54. ^ Heyduk, Alan F.; Nocera (31 August 2001). "Daniel G.". Science. 293 (5535): 1639–1641. Bibcode:2001Sci...293.1639H. doi:10.1126/science.1062965. PMID 11533485. S2CID 35989348.
  55. ^ Hu, Xile; Cossairt, Brandi M.; Brunschwig, Bruce S.; Lewis, Nathan S.; Peters, Jonas C. (2005). "Electrocatalytic hydrogen evolution by cobalt difluoroboryl-diglyoximate complexes" (PDF). Chemical Communications. 37 (37): 4723–4725. doi:10.1039/B509188H. PMID 16175305.
  56. ^ Yano, Junko; Kern, Jan; Irrgang, Klaus-Dieter; Latimer, Matthew J.; Bergmann, Uwe; Glatzel, Pieter; Pushkar, Yulia; Biesiadka, Jacek; Loll, Bernhard; Sauer, Kenneth; Messinger, Johannes; Zouni, Athina; Yachandra, Vittal K. (23 August 2005). "X-ray damage to the Mn4Ca complex in single crystals of photosystem II: A case study for metalloprotein crystallography". Proceedings of the National Academy of Sciences. 102 (34): 12047–12052. Bibcode:2005PNAS..10212047Y. doi:10.1073/pnas.0505207102. PMC 1186027. PMID 16103362.
  57. ^ Yasufumi, Umena; Kawakami, Keisuke; Shen, Jian-Ren; Kamiya, Nobuo (5 May 2011). "Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å" (PDF). Nature. 473 (7345): 55–60. Bibcode:2011Natur.473...55U. doi:10.1038/nature09913. PMID 21499260. S2CID 205224374.
  58. ^ Dismukes, G. Charles; Brimblecombe, Robin; Felton, Greg A. N.; Pryadun, Ruslan S.; Sheats, John E.; Spiccia, Leone; Swiegers, Gerhard F. (2009). "Development of Bioinspired 4O4−Cubane Water Oxidation Catalysts: Lessons from Photosynthesis". Accounts of Chemical Research. 42 (12): 1935–1943. doi:10.1021/ar900249x. PMID 19908827.
  59. ^ Zhang, Biaobiao; Sun, Licheng (2019). "Artificial photosynthesis: opportunities and challenges of molecular catalysts". Chemical Society Reviews. 48 (7): 2216–2264. doi:10.1039/C8CS00897C. PMID 30895997.
  60. ^ Calzaferri, Gion (2010). "Artificial Photosynthesis" (PDF). Topics in Catalysis. 53 (3): 130–140. doi:10.1007/s11244-009-9424-9. S2CID 195282014.
  61. ^ Tabacchi, Gloria; Calzaferri, Gion; Fois, Ettore (2016). "One-dimensional self-assembly of perylene-diimide dyes by unidirectional transit of zeolite channel openings". Chemical Communications. 52 (75): 11195–11198. doi:10.1039/C6CC05303C. hdl:11383/2057444. PMID 27484884.
  62. ^ Calzaferri, Gion; Méallet-Renault, Rachel; Brühwiler, Dominik; Pansu, Robert; Dolamic, Igor; Dienel, Thomas; Adler, Pauline; Li, Huanrong; Kunzmann, Andreas (2011). "Designing Dye–Nanochannel Antenna Hybrid Materials for Light Harvesting, Transport and Trapping". ChemPhysChem. 12 (3): 580–594. doi:10.1002/cphc.201000947. PMID 21337487.
  63. ^ Tabacchi, Gloria; Fois, Ettore; Calzaferri, Gion (2015). "Structure of Nanochannel Entrances in Stopcock-Functionalized Zeolite L". Angewandte Chemie International Edition. 54 (38): 11112–11116. doi:10.1002/anie.201504745. hdl:11383/2030753. PMID 26255642. S2CID 205388715.
  64. ^ Ellis J.R. (2010). "Tackling unintelligent design". Nature. 463 (7278): 164–165. Bibcode:2010Natur.463..164E. doi:10.1038/463164a. PMID 20075906. S2CID 205052478.
  65. ^ a b Dubois, M. Rakowski; Dubois, Daniel L. (2009). "Development of Molecular Electrocatalysts for CO2Reduction and H2Production/Oxidation". Accounts of Chemical Research. 42 (12): 1974–1982. doi:10.1021/ar900110c. PMID 19645445.
  66. ^ a b c d Magnuson, Ann; Anderlund, Magnus; Johansson, Olof; Lindblad, Peter; Lomoth, Reiner; Polivka, Tomas; Ott, Sascha; Stensjö, Karin; Styring, Stenbjörn; Sundström, Villy; Hammarström, Leif (December 2009). "Biomimetic and Microbial Approaches to Solar Fuel Generation". Accounts of Chemical Research. 42 (12): 1899–1909. doi:10.1021/ar900127h. PMID 19757805.
  67. ^ JCVI. "Synthetic Biology & Bioenergy – Overview". J. Craig Venter Institute. Retrieved 17 January 2012.
  68. ^ "Hydrogen from Water in a Novel Recombinant Cyanobacterial System". J. Craig Venter Institute. Retrieved 17 January 2012.
  69. ^ McGrath, Matt (22 August 2017). "'Cyborg' bacteria deliver green fuel source from sunlight". BBC News.
  70. ^ "Debut of the first practical "artificial leaf"". ACS News Releases. American Chemical Society. Archived from the original on 24 February 2013. Retrieved 10 January 2012.
  71. ^ Reece, Steven Y.; Hamel, Jonathan A.; Sung, Kimberly; Jarvi, Thomas D.; Esswein, Arthur J.; Pijpers, Joep J. H.; Nocera, Daniel G. (4 November 2011). "Wireless Solar Water Splitting Using Silicon-Based Semiconductors and Earth-Abundant Catalysts". Science. 334 (6056): 645–648. Bibcode:2011Sci...334..645R. doi:10.1126/science.1209816. PMID 21960528. S2CID 12720266.
  72. ^ Van Noorden, Richard (2012). "'Artificial leaf' faces economic hurdle". Nature. doi:10.1038/nature.2012.10703. S2CID 211729746.
  73. ^ Lindberg, Pia; Schûtz, Kathrin; Happe, Thomas; Lindblad, Peter (November–December 2002). "A hydrogen-producing, hydrogenase-free mutant strain of Nostoc punctiforme ATCC 29133". International Journal of Hydrogen Energy. 27 (11–12): 1291–1296. Bibcode:2002IJHE...27.1291L. doi:10.1016/S0360-3199(02)00121-0.
  74. ^ a b Lan, Ethan I.; Liao, James C. (July 2011). "Metabolic engineering of cyanobacteria for 1-butanol production from carbon dioxide". Metabolic Engineering. 13 (4): 353–363. doi:10.1016/j.ymben.2011.04.004. PMID 21569861.
  75. ^ Kunjapur, Aditya M.; Eldridge, R. Bruce (2010). "Photobioreactor Design for Commercial Biofuel Production from Microalgae". Industrial and Engineering Chemistry Research. 49 (8): 3516–3526. doi:10.1021/ie901459u.
  76. ^ Reynolds, Matt. "Scientists Are Trying to Grow Crops in the Dark". Wired. Retrieved 23 July 2022.
  77. ^ Hann, Elizabeth C.; Overa, Sean; Harland-Dunaway, Marcus; Narvaez, Andrés F.; Le, Dang N.; Orozco-Cárdenas, Martha L.; Jiao, Feng; Jinkerson, Robert E. (June 2022). "A hybrid inorganic–biological artificial photosynthesis system for energy-efficient food production". Nature Food. 3 (6): 461–471. doi:10.1038/s43016-022-00530-x. PMID 37118051. S2CID 250004816.
  78. ^ Blankenship, Robert E.; Tiede, David M.; Barber, James; Brudvig, Gary W.; Fleming, Graham; Ghirardi, Maria; Gunner, M. R.; Junge, Wolfgang; Kramer, David M.; Melis, Anastasios; Moore, Thomas A.; Moser, Christopher C.; Nocera, Daniel G.; Nozik, Arthur J.; Ort, Donald R.; Parson, William W.; Prince, Roger C.; Sayre, Richard T. (13 May 2011). "Comparing Photosynthetic and Photovoltaic Efficiencies and Recognizing the Potential for Improvement". Science. 332 (6031): 805–809. Bibcode:2011Sci...332..805B. doi:10.1126/science.1200165. PMID 21566184. S2CID 22798697.
  79. ^ Armaroli, Nicola; Balzani, Vincenzo (2016). "Solar Electricity and Solar Fuels: Status and Perspectives in the Context of the Energy Transition". Chemistry – A European Journal. 22 (1): 32–57. doi:10.1002/chem.201503580. PMID 26584653.
  80. ^ Bonke, Shannon A.; et al. (2015). "Renewable fuels from concentrated solar power: towards practical artificial photosynthesis". Energy and Environmental Science. 8 (9): 2791–2796. doi:10.1039/c5ee02214b. S2CID 94698839.
  81. ^ Biello, David. "Plants versus Photovoltaics: Which Are Better to Capture Solar Energy?". Scientific American. Retrieved 17 January 2012.

External links[edit]