Askaryan radiation

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search

The Askaryan radiation[1][2] also known as Askaryan effect is the phenomenon whereby a particle traveling faster than the phase velocity of light in a dense dielectric (such as salt, ice or the lunar regolith) produces a shower of secondary charged particles which contain a charge anisotropy and thus emits a cone of coherent radiation in the radio or microwave part of the electromagnetic spectrum. It is similar to the Cherenkov radiation. It is named after Gurgen Askaryan, a Soviet-Armenian physicist who postulated it in 1962.

The radiation was first observed experimentally in 2000, 38 years after its theoretical prediction. So far the effect has been observed in silica sand,[3] rock salt,[4] ice,[5] and Earth's atmosphere.[6]

The effect is of primary interest in using bulk matter to detect ultra-high energy neutrinos. The Antarctic Impulse Transient Antenna (ANITA) experiment uses antennas attached to a balloon flying over Antarctica to detect the Askaryan radiation produced as cosmic neutrinos travel through the ice.[7][8] Several experiments have also used the Moon as a neutrino detector based on detection of the Askaryan radiation.[9][10][11][12]

See also[edit]

References[edit]

  1. ^ Hanson, Jordan C; Connolly, Amy L (2016). "Complex Analysis of Askaryan Radiation: A Fully Analytic Treatment including the LPM effect and Cascade Form Factor". Astroparticle Physics. 91: 75–89. arXiv:1605.04975. Bibcode:2017APh....91...75H. doi:10.1016/j.astropartphys.2017.03.008.
  2. ^ Hanson, Jordan C; Connolly, Amy L; Zas, Enrique (2011). "Practical and accurate calculations of Askaryan radiation". Physical Review D. 84 (10). arXiv:1106.6283. Bibcode:2011PhRvD..84j3003A. doi:10.1103/PhysRevD.84.103003.
  3. ^ Hanson, Jordan C; Connolly, Amy L; Walz, D; Field, C; Iverson, R; Odian, A; Resch, G; Schoessow, P; Williams, D (2000). "Observation of the Askaryan Effect: Coherent Microwave Cherenkov Emission from Charge Asymmetry in High Energy Particle Cascades". Physical Review Letters. 86 (13): 2802–5. arXiv:hep-ex/0011001. Bibcode:2001PhRvL..86.2802S. doi:10.1103/PhysRevLett.86.2802. PMID 11290043.
  4. ^ Hanson, Jordan C; Connolly, Amy L; Field, R. C; Guillian, E; Milinčić, R; Miočinović, P; Walz, D; Williams, D (2004). "Accelerator Measurements of the Askaryan effect in Rock Salt: A Roadmap Toward Teraton Underground Neutrino Detectors" (Submitted manuscript). Physical Review D. 72 (2). arXiv:astro-ph/0412128. Bibcode:2005PhRvD..72b3002G. doi:10.1103/PhysRevD.72.023002.
  5. ^ Hanson, Jordan C; Connolly, Amy L; Beatty, J. J; Besson, D. Z; Binns, W. R; Chen, C; Chen, P; Clem, J. M; Connolly, A; Dowkontt, P. F; Duvernois, M. A; Field, R. C; Goldstein, D; Goodhue, A; Hast, C; Hebert, C. L; Hoover, S; Israel, M. H; Kowalski, J; Learned, J. G; Liewer, K. M; Link, J. T; Lusczek, E; Matsuno, S; Mercurio, B; Miki, C; Miočinović, P; Nam, J; Naudet, C. J; et al. (2007). "Observations of the Askaryan Effect in Ice". Physical Review Letters. 99 (17): 171101. arXiv:hep-ex/0611008. Bibcode:2007PhRvL..99q1101G. doi:10.1103/PhysRevLett.99.171101. PMID 17995315.
  6. ^ Buitink, Stijn; Corstanje, A.; Falcke, H; Hörandel, J. R; Huege, T; Nelles, A; Rachen, J. P; Rossetto, L; Schellart, P; Scholten, O; Ter Veen, S; Thoudam, S; Trinh, T. N. G; Anderson, J; Asgekar, A; Avruch, I. M; Bell, M. E; Bentum, M. J; Bernardi, G; Best, P; Bonafede, A; Breitling, F; Broderick, J. W; Brouw, W. N; Brüggen, M; Butcher, H. R; Carbone, D; Ciardi, B; Conway, J. E; et al. (2016). "A large light-mass component of cosmic rays at 1017–1017.5 electronvolts from radio observations". Nature. 531 (7592): 70–3. arXiv:1603.01594. Bibcode:2016Natur.531...70B. doi:10.1038/nature16976. PMID 26935696.
  7. ^ ANITA Project Overview
  8. ^ ARIANNA collaboration
  9. ^ GLUE project
  10. ^ NuMoon project
  11. ^ LUNASKA project
  12. ^ RESUN project

External links[edit]