Atlantic meridional overturning circulation

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
Topographic map of the Nordic Seas and subpolar basins with schematic circulation of surface currents (solid curves) and deep currents (dashed curves) that form a portion of the Atlantic meridional overturning circulation. Colors of curves indicate approximate temperatures.

The Atlantic meridional overturning circulation (AMOC) is a system of currents in the Atlantic Ocean, characterized by a northward flow of warm, salty water in the upper layers of the Atlantic, including the Gulf Stream, and a southward flow of colder, deep waters that are part of the thermohaline circulation. The AMOC is an important component of the Earth’s climate system.


This ocean current system transports a substantial amount of heat energy from the tropics and Southern Hemisphere toward the North Atlantic, where the heat is then transferred to the atmosphere. Changes in this ocean circulation could have a profound impact on many aspects of the global climate system.

There is growing evidence that fluctuations in Atlantic sea surface temperatures, hypothesized to be related to fluctuations in the AMOC, have played a prominent role in significant climate fluctuations around the globe on a variety of time scales[1].

Measurements across the North Atlantic suggest multidecadal swings in sea surface temperatures that may be at least in part due to fluctuations in the AMOC. Evidence from paleorecords suggests that there have also been large, decade-scale changes in the AMOC, particularly during glacial times. These abrupt changes have had a profound impact on climate, both locally in the Atlantic and in remote locations around the globe.

At its northern boundary, the AMOC interacts with the circulation of the Arctic Ocean. The summer Arctic sea ice cover has undergone dramatic retreat since satellite records began in 1979, amounting to a loss of almost 30% of the September ice cover in 39 years. Climate model simulations suggest that rapid and sustained September Arctic ice loss is likely in future 21st century climate projections.

See also[edit]


  • The Potential for Abrupt Change in the Atlantic Meridional Overturning Circulation, Lead Author: Thomas L. Delworth, NOAA; Contributing Authors: Peter U. Clark, Oregon State University; Marika Holland, National Center for Atmospheric Research; William E. Johns, University of Miami; Till Kuhlbrodt, University of Reading; Jean Lynch-Stieglitz, Georgia Institute of Technology; Carrie Morrill, University of Colorado/NOAA; Richard Seager, Columbia University; Andrew J. Weaver, University of Victoria; Rong Zhang, NOAA.
  • Abrupt Climate Change A report by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research, U.S. Geological Survey, Reston, VA. Lead Authors: Peter U. Clark, Oregon State University; Andrew J. Weaver, University of Victoria; Contributing Authors: Edward Brook, Oregon State University; Edward R. Cook, Columbia University; Thomas L. Delworth, NOAA; Konrad Steffen, University of Colorado.
  • Levitus, S., J.I. Antonov, J. Wang, T.L. Delworth, K.W. Dixon, and A.J. Broccoli, 2001: Anthropogenic warming of Earth’s climate system. Science, 292(5515), 267-270.
  • Kuhlbrodt, T., A. Griesel, M. Montoya, A. Levermann, M. Hofmann, and S. Rahmstorf, 2007: On the driving processes of the Atlantic meridional overturning circulation. Rev. Geophys., 45, RG2001, doi:10.1029/2004RG000166.
  • Rahmstorf, S., 2002: Ocean circulation and climate during the past 120,000 years. Nature, 419, 207-214.
  1. ^ Sévellec, Florian; Fedorov, Alexey V.; Liu, Wei (August 2017). "Arctic sea-ice decline weakens the Atlantic Meridional Overturning Circulation". Nature Climate Change. 7 (8): 604–610. doi:10.1038/nclimate3353. ISSN 1758-678X. 

External links[edit]