Aviadvigatel PD-14

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
MAKS Airshow 2013 (Ramenskoye Airport, Russia) (524-34).jpg
Type Turbofan
National origin Russia
Manufacturer Aviadvigatel
First run summer 2014[1]
Major applications Irkut MC-21
Number built 13[2]
Program cost RUB 35 billion (US$1.1 billion).[3]
Unit cost less than $5,500,000 USD[citation needed]
Developed from Aviadvigatel PS-90

The Aviadvigatel PD-14 (previously known as PS-14) is a turbofan being developed by Aviadvigatel to power the Irkut MC-21 twin-jet airliner.


Flight testing on an Il-76
External media
PD-14 engine with chevrons on the plane Il-76LL. Oktober 2015.
PD-14 engine in the assembly. Augustus 2015.
PD-14: Flight tests of the engine. November 2015. ‹See Tfd›(in Russian)

In December 2009, the PD-14 was developed to be 15% more efficient than its PS-90A2 predecessor to be installed on the MS-21 and the Ilyushin Il-276.[4]

The PD-14 was announced in early 2010 with its development cost estimated at RUB 35 billion (US$1.1 billion).[3], In April 2010, Aviadvigatel was expecting to start its certification procedure in 2012.[5] Its core was first tested on 26 November 2010.[6] It was displayed for the first time at the 2013 MAKS air show.[7]

Between December 2016 and May 2017, the PD-14 operational performance and working efficiency at all altitudes and speeds were assessed on an Ilyushin Il-76 testbed at Gromov Flight Research Institute near Moscow.[8] After two years exploring performance at most altitudes, airspeeds and operating modes, the first and second testing stages confirmed its basic operating parameters. A third phase of flight tests debuted in January 2018 from the GFRI Zhukovsky Airfield, conducted in co-operation with certification specialists to formally confirm the pre-certification efforts findings.

Ground tests will continue in parallel, and United Engine Corporation claims that the engine matches the performance of products from foreign competitors and surpasses them for noise and emissions.[9] Bird strike tests on the fan, including high-speed video and vibration measurements, were conducted together with fan blade strength tests. The successful results are expected to reduce the time and cost of attaining full certification status.[10]

United Engine will deliver five PD-14s to Irkut by the end of 2018, after Rosaviatsia certification, to start flight tests on the MC-21 in 2019 for type certification of the variant in 2021.[11] EASA certification is expected when it will enter series production.[2] In October 2018, Rosaviatsia granted certification to the PD-14, and deliveries of the first engines for two MC-21s are expected by the end of 2018. European certificate validation is planned for 2019.[12]


The 1.9 m (75 in) fan has 18 titanium alloy blades, providing an 8.5:1 bypass ratio significantly improved from previous Russian engines, but slightly below the CFM LEAP's 10:1 or the Pratt & Whitney PW1000G's 12:1 for the MC-21 from 2017. The 3D aerodynamics shaped first high-pressure turbine stage has advanced cooling channels.[7] Twenty new materials were developed for the powerplant, including monocrystalline alloys for vanes, and high-strength nickel and titanium alloys for shafts and disks.[12]

Developed from the PS-12 (an uprated PS-90A), the 122-153 kN (27,500-34,500 lbf) thrust powerplant is designed by Aviadvigatel and manufactured by the Perm Engine Company. The two-shaft turbofan has a high-pressure core from the PS-12 with an eight-stage compressor and a two-stage turbine, and four low-pressure stages. The high-bypass engine does not employ an exhaust mixer, fuel burn should be reduced by 10-15% from the CFM International CFM56 and it could power an upgraded Tupolev Tu-204.[citation needed]

Proposed derivatives[edit]


Launched in the summer of 2016 by United Engine Corporation through Aviadvigatel and NPO Saturn, the 35 tf (77,000 lbf) thrust PD-35 will be developed till 2023 for 180 billion rubles ($3 billion) including 60 billion for test benches and laboratory equipment, to power future wide-body aircraft including the Russo-Chinese CRAIC CR929. The 8 m (310 in) long engine will weigh 8 t (18,000 lb), its fan will be 3.1 m (120 in) in diameter and its scaled up PD-14 core will have a nine-stage high-pressure compressor and two-stage turbine.[18]

On 19 January 2018, the Russian government awarded UEC-Aviadvigatel a ₽64.3 billion ($1.13 billion) contract to develop a PD-35-1 demonstrator by 2023, including wide-chord composite fan blades and fan case, a 23:1 compressor pressure ratio, ceramic matrix composites – silicon carbide-silicon carbide (SiC-SiC) and carbon-silicon carbide (C-SiC) – and advanced cooling for 1,450 °C (2,640 °F) temperatures. It could power the Ilyushin IL-96-400, the Il-76 airlifter, Il-78 tanker and an Antonov An-124 replacement.[19] A de-rated version would meet the An-124 thrust requirements.[20]



The PD-14 Engine and Advanced Engines Family[13]
Model PD-14A PD-14 PD-14M PD-10
Configuration Twin-spool high bypass turbofan
Take-off thrust 12.5 tf (28,000 lbf) 14.0 tf (31,000 lbf) 15.6 tf (34,000 lbf) 10.9 tf (24,000 lbf)
Dry weight 2,870 kg (6,330 lb) 2,970 kg (6,550 lb) 2,350 kg (5,180 lb)
Fan diameter 1,900 mm (75 in) 1,677 mm (66.0 in)
Compressor 1 fan + 3-stage LP + 8-stage HP 1 fan + 4 LP + 8 HP 1 fan + 1 LP + 8 HP
Combustor Annular
Turbine 2-stage HP + 6-stage LP 2 HP + 5 LP
BPR[verification needed] 8.6 8.5 7.2
OPR[verification needed] 38 41 46
TSFC[verification needed] 0.526 kg/(kgf.h)
Power-to-weight ratio 4.36 4.88 5.25 4.64
Application МС-21-300 MC-21-200 MC-21-400 Superjet 130

See also[edit]

Related development

Comparable engines

Related lists


  1. ^ "Russia's PD-14 Engine Nears First Flight". Aviation Week. Nov 12, 2014.
  2. ^ a b "MC-21 narrowbody to sport Russian PD-14 engines from 2019". Russian Aviation Insider. March 8, 2018.
  3. ^ a b Tom Zaitsev (2 Feb 2010). "Russia firms 'PD-14' domestic engine concept for MS-21". Flight Global.
  4. ^ "Russian aircraft designers tested yesterday's engine". RusBusinessNews. 16 Dec 2009.
  5. ^ "In 2011 Aviadvigatel OJSC will develop PD-14 engine demonstrator" (Press release). UEC-Aviadvigatel. 19 April 2010.
  6. ^ "PD-14: core engine tests launched". Take-off. Feb 2011.
  7. ^ a b c Stephen Trimble (29 Aug 2013). "MAKS: Russia lifts veil on PD-14 demonstrator, latest engine technology". Flightglobal.
  8. ^ Polina Montag-Girmes (May 26, 2017). "UAC completes PD-14 second-stage flight testing for MC-21". Aviation Week Network.
  9. ^ David Kaminski Morrow (2 Jan 2018). "New round of flight tests take PD-14 closer to certification". Flightglobal.
  10. ^ David Kaminski Morrow (18 Jan 2018). "PD-14 fan undergoes bird-strike testing". Flightglobal.
  11. ^ David Kaminski Morrow (26 Jan 2018). "Irkut signs for MC-21's initial PD-14 flight-test engines". Flightglobal.
  12. ^ a b David Kaminski Morrow (19 Oct 2018). "PD-14 engine for MC-21 secures Russian certification". Flightglobal.
  13. ^ a b "The PD-14 Engine and Advanced Engines Family". UEC-Aviadvigatel.
  14. ^ "Information and Technical Newsletter" (PDF). Perm Aircraft Engines. January 2011. p. 11.
  15. ^ "Interfax Russia: Aviation PD-18R jet engine to become most powerful in PD-14 turbofan family". Allbusiness.[dead link]
  16. ^ "PD-12V helicopter engine project discussions in Aviadvigatel" (Press release). UEC-Aviadvigatel. 28 April 2016.
  17. ^ "New Engines For Russia's Heavy-lift Helicopter". Aviation International News. 2 June 2016.
  18. ^ "Russian PD-35 engine to enter market in six years". Russian Aviation Insider. June 8, 2017.
  19. ^ Stephen Trimble (19 Jan 2018). "Contract docs reveal plans for Russia's new widebody engine". Flightglobal.
  20. ^ Guy Norris (Oct 10, 2018). "Freighter Growth And Possible An-124 Reengining Boost CF6 Prospects". Aviation Week & Space Technology.

External links[edit]