B8 polytope
Appearance
This article may be too technical for most readers to understand.(September 2018) |
This article contains too many pictures for its overall length.(March 2023) |
8-cube |
8-orthoplex |
8-demicube |
In 8-dimensional geometry, there are 256 uniform polytopes with B8 symmetry. There are two regular forms, the 8-orthoplex and 8-cube, with 16 and 256 vertices respectively. The 8-demicube is added with half the symmetry.
They can be visualized as symmetric orthographic projections in Coxeter planes of the B8 Coxeter group, and other subgroups.
Graphs
[edit]Symmetric orthographic projections of these 256 polytopes can be made in the B8, B7, B6, B5, B4, B3, B2, A7, A5, A3, Coxeter planes. Ak has [k+1] symmetry, and Bk has [2k] symmetry.
These 256 polytopes are each shown in these 10 symmetry planes, with vertices and edges drawn, and vertices colored by the number of overlapping vertices in each projective position.
# | Element counts | Coxeter-Dynkin diagram Schläfli symbol Name | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
B8 [16] |
B7 [14] |
B6 [12] |
B5 [10] |
B4 [8] |
B3 [6] |
B2 [4] |
A7 [8] |
A5 [6] |
A3 [4] | ||
1 | t0{3,3,3,3,3,3,4} 8-orthoplex Diacosipentacontahexazetton (ek) | ||||||||||
2 | t1{3,3,3,3,3,3,4} Rectified 8-orthoplex Rectified diacosipentacontahexazetton (rek) | ||||||||||
3 | t2{3,3,3,3,3,3,4} Birectified 8-orthoplex Birectified diacosipentacontahexazetton (bark) | ||||||||||
4 | t3{3,3,3,3,3,3,4} Trirectified 8-orthoplex Trirectified diacosipentacontahexazetton (tark) | ||||||||||
5 | t3{4,3,3,3,3,3,3} Trirectified 8-cube Trirectified octeract (tro) | ||||||||||
6 | t2{4,3,3,3,3,3,3} Birectified 8-cube Birectified octeract (bro) | ||||||||||
7 | t1{4,3,3,3,3,3,3} Rectified 8-cube Rectified octeract (recto) | ||||||||||
8 | t0{4,3,3,3,3,3,3} 8-cube Octeract (octo) | ||||||||||
9 | t0,1{3,3,3,3,3,3,4} Truncated 8-orthoplex Truncated diacosipentacontahexazetton (tek) | ||||||||||
10 | t0,2{3,3,3,3,3,3,4} Cantellated 8-orthoplex Small rhombated diacosipentacontahexazetton (srek) | ||||||||||
11 | t1,2{3,3,3,3,3,3,4} Bitruncated 8-orthoplex Bitruncated diacosipentacontahexazetton (batek) | ||||||||||
12 | t0,3{3,3,3,3,3,3,4} Runcinated 8-orthoplex Small prismated diacosipentacontahexazetton (spek) | ||||||||||
13 | t1,3{3,3,3,3,3,3,4} Bicantellated 8-orthoplex Small birhombated diacosipentacontahexazetton (sabork) | ||||||||||
14 | t2,3{3,3,3,3,3,3,4} Tritruncated 8-orthoplex Tritruncated diacosipentacontahexazetton (tatek) | ||||||||||
15 | t0,4{3,3,3,3,3,3,4} Stericated 8-orthoplex Small cellated diacosipentacontahexazetton (scak) | ||||||||||
16 | t1,4{3,3,3,3,3,3,4} Biruncinated 8-orthoplex Small biprismated diacosipentacontahexazetton (sabpek) | ||||||||||
17 | t2,4{3,3,3,3,3,3,4} Tricantellated 8-orthoplex Small trirhombated diacosipentacontahexazetton (satrek) | ||||||||||
18 | t3,4{4,3,3,3,3,3,3} Quadritruncated 8-cube Octeractidiacosipentacontahexazetton (oke) | ||||||||||
19 | t0,5{3,3,3,3,3,3,4} Pentellated 8-orthoplex Small terated diacosipentacontahexazetton (setek) | ||||||||||
20 | t1,5{3,3,3,3,3,3,4} Bistericated 8-orthoplex Small bicellated diacosipentacontahexazetton (sibcak) | ||||||||||
21 | t2,5{4,3,3,3,3,3,3} Triruncinated 8-cube Small triprismato-octeractidiacosipentacontahexazetton (sitpoke) | ||||||||||
22 | t2,4{4,3,3,3,3,3,3} Tricantellated 8-cube Small trirhombated octeract (satro) | ||||||||||
23 | t2,3{4,3,3,3,3,3,3} Tritruncated 8-cube Tritruncated octeract (tato) | ||||||||||
24 | t0,6{3,3,3,3,3,3,4} Hexicated 8-orthoplex Small petated diacosipentacontahexazetton (supek) | ||||||||||
25 | t1,6{4,3,3,3,3,3,3} Bipentellated 8-cube Small biteri-octeractidiacosipentacontahexazetton (sabtoke) | ||||||||||
26 | t1,5{4,3,3,3,3,3,3} Bistericated 8-cube Small bicellated octeract (sobco) | ||||||||||
27 | t1,4{4,3,3,3,3,3,3} Biruncinated 8-cube Small biprismated octeract (sabepo) | ||||||||||
28 | t1,3{4,3,3,3,3,3,3} Bicantellated 8-cube Small birhombated octeract (subro) | ||||||||||
29 | t1,2{4,3,3,3,3,3,3} Bitruncated 8-cube Bitruncated octeract (bato) | ||||||||||
30 | t0,7{4,3,3,3,3,3,3} Heptellated 8-cube Small exi-octeractidiacosipentacontahexazetton (saxoke) | ||||||||||
31 | t0,6{4,3,3,3,3,3,3} Hexicated 8-cube Small petated octeract (supo) | ||||||||||
32 | t0,5{4,3,3,3,3,3,3} Pentellated 8-cube Small terated octeract (soto) | ||||||||||
33 | t0,4{4,3,3,3,3,3,3} Stericated 8-cube Small cellated octeract (soco) | ||||||||||
34 | t0,3{4,3,3,3,3,3,3} Runcinated 8-cube Small prismated octeract (sopo) | ||||||||||
35 | t0,2{4,3,3,3,3,3,3} Cantellated 8-cube Small rhombated octeract (soro) | ||||||||||
36 | t0,1{4,3,3,3,3,3,3} Truncated 8-cube Truncated octeract (tocto) | ||||||||||
37 | t0,1,2{3,3,3,3,3,3,4} Cantitruncated 8-orthoplex Great rhombated diacosipentacontahexazetton | ||||||||||
38 | t0,1,3{3,3,3,3,3,3,4} Runcitruncated 8-orthoplex Prismatotruncated diacosipentacontahexazetton | ||||||||||
39 | t0,2,3{3,3,3,3,3,3,4} Runcicantellated 8-orthoplex Prismatorhombated diacosipentacontahexazetton | ||||||||||
40 | t1,2,3{3,3,3,3,3,3,4} Bicantitruncated 8-orthoplex Great birhombated diacosipentacontahexazetton | ||||||||||
41 | t0,1,4{3,3,3,3,3,3,4} Steritruncated 8-orthoplex Cellitruncated diacosipentacontahexazetton | ||||||||||
42 | t0,2,4{3,3,3,3,3,3,4} Stericantellated 8-orthoplex Cellirhombated diacosipentacontahexazetton | ||||||||||
43 | t1,2,4{3,3,3,3,3,3,4} Biruncitruncated 8-orthoplex Biprismatotruncated diacosipentacontahexazetton | ||||||||||
44 | t0,3,4{3,3,3,3,3,3,4} Steriruncinated 8-orthoplex Celliprismated diacosipentacontahexazetton | ||||||||||
45 | t1,3,4{3,3,3,3,3,3,4} Biruncicantellated 8-orthoplex Biprismatorhombated diacosipentacontahexazetton | ||||||||||
46 | t2,3,4{3,3,3,3,3,3,4} Tricantitruncated 8-orthoplex Great trirhombated diacosipentacontahexazetton | ||||||||||
47 | t0,1,5{3,3,3,3,3,3,4} Pentitruncated 8-orthoplex Teritruncated diacosipentacontahexazetton | ||||||||||
48 | t0,2,5{3,3,3,3,3,3,4} Penticantellated 8-orthoplex Terirhombated diacosipentacontahexazetton | ||||||||||
49 | t1,2,5{3,3,3,3,3,3,4} Bisteritruncated 8-orthoplex Bicellitruncated diacosipentacontahexazetton | ||||||||||
50 | t0,3,5{3,3,3,3,3,3,4} Pentiruncinated 8-orthoplex Teriprismated diacosipentacontahexazetton | ||||||||||
51 | t1,3,5{3,3,3,3,3,3,4} Bistericantellated 8-orthoplex Bicellirhombated diacosipentacontahexazetton | ||||||||||
52 | t2,3,5{3,3,3,3,3,3,4} Triruncitruncated 8-orthoplex Triprismatotruncated diacosipentacontahexazetton | ||||||||||
53 | t0,4,5{3,3,3,3,3,3,4} Pentistericated 8-orthoplex Tericellated diacosipentacontahexazetton | ||||||||||
54 | t1,4,5{3,3,3,3,3,3,4} Bisteriruncinated 8-orthoplex Bicelliprismated diacosipentacontahexazetton | ||||||||||
55 | t2,3,5{4,3,3,3,3,3,3} Triruncitruncated 8-cube Triprismatotruncated octeract | ||||||||||
56 | t2,3,4{4,3,3,3,3,3,3} Tricantitruncated 8-cube Great trirhombated octeract | ||||||||||
57 | t0,1,6{3,3,3,3,3,3,4} Hexitruncated 8-orthoplex Petitruncated diacosipentacontahexazetton | ||||||||||
58 | t0,2,6{3,3,3,3,3,3,4} Hexicantellated 8-orthoplex Petirhombated diacosipentacontahexazetton | ||||||||||
59 | t1,2,6{3,3,3,3,3,3,4} Bipentitruncated 8-orthoplex Biteritruncated diacosipentacontahexazetton | ||||||||||
60 | t0,3,6{3,3,3,3,3,3,4} Hexiruncinated 8-orthoplex Petiprismated diacosipentacontahexazetton | ||||||||||
61 | t1,3,6{3,3,3,3,3,3,4} Bipenticantellated 8-orthoplex Biterirhombated diacosipentacontahexazetton | ||||||||||
62 | t1,4,5{4,3,3,3,3,3,3} Bisteriruncinated 8-cube Bicelliprismated octeract | ||||||||||
63 | t0,4,6{3,3,3,3,3,3,4} Hexistericated 8-orthoplex Peticellated diacosipentacontahexazetton | ||||||||||
64 | t1,3,6{4,3,3,3,3,3,3} Bipenticantellated 8-cube Biterirhombated octeract | ||||||||||
65 | t1,3,5{4,3,3,3,3,3,3} Bistericantellated 8-cube Bicellirhombated octeract | ||||||||||
66 | t1,3,4{4,3,3,3,3,3,3} Biruncicantellated 8-cube Biprismatorhombated octeract | ||||||||||
67 | t0,5,6{3,3,3,3,3,3,4} Hexipentellated 8-orthoplex Petiterated diacosipentacontahexazetton | ||||||||||
68 | t1,2,6{4,3,3,3,3,3,3} Bipentitruncated 8-cube Biteritruncated octeract | ||||||||||
69 | t1,2,5{4,3,3,3,3,3,3} Bisteritruncated 8-cube Bicellitruncated octeract | ||||||||||
70 | t1,2,4{4,3,3,3,3,3,3} Biruncitruncated 8-cube Biprismatotruncated octeract | ||||||||||
71 | t1,2,3{4,3,3,3,3,3,3} Bicantitruncated 8-cube Great birhombated octeract | ||||||||||
72 | t0,1,7{3,3,3,3,3,3,4} Heptitruncated 8-orthoplex Exitruncated diacosipentacontahexazetton | ||||||||||
73 | t0,2,7{3,3,3,3,3,3,4} Hepticantellated 8-orthoplex Exirhombated diacosipentacontahexazetton | ||||||||||
74 | t0,5,6{4,3,3,3,3,3,3} Hexipentellated 8-cube Petiterated octeract | ||||||||||
75 | t0,3,7{3,3,3,3,3,3,4} Heptiruncinated 8-orthoplex Exiprismated diacosipentacontahexazetton | ||||||||||
76 | t0,4,6{4,3,3,3,3,3,3} Hexistericated 8-cube Peticellated octeract | ||||||||||
77 | t0,4,5{4,3,3,3,3,3,3} Pentistericated 8-cube Tericellated octeract | ||||||||||
78 | t0,3,7{4,3,3,3,3,3,3} Heptiruncinated 8-cube Exiprismated octeract | ||||||||||
79 | t0,3,6{4,3,3,3,3,3,3} Hexiruncinated 8-cube Petiprismated octeract | ||||||||||
80 | t0,3,5{4,3,3,3,3,3,3} Pentiruncinated 8-cube Teriprismated octeract | ||||||||||
81 | t0,3,4{4,3,3,3,3,3,3} Steriruncinated 8-cube Celliprismated octeract | ||||||||||
82 | t0,2,7{4,3,3,3,3,3,3} Hepticantellated 8-cube Exirhombated octeract | ||||||||||
83 | t0,2,6{4,3,3,3,3,3,3} Hexicantellated 8-cube Petirhombated octeract | ||||||||||
84 | t0,2,5{4,3,3,3,3,3,3} Penticantellated 8-cube Terirhombated octeract | ||||||||||
85 | t0,2,4{4,3,3,3,3,3,3} Stericantellated 8-cube Cellirhombated octeract | ||||||||||
86 | t0,2,3{4,3,3,3,3,3,3} Runcicantellated 8-cube Prismatorhombated octeract | ||||||||||
87 | t0,1,7{4,3,3,3,3,3,3} Heptitruncated 8-cube Exitruncated octeract | ||||||||||
88 | t0,1,6{4,3,3,3,3,3,3} Hexitruncated 8-cube Petitruncated octeract | ||||||||||
89 | t0,1,5{4,3,3,3,3,3,3} Pentitruncated 8-cube Teritruncated octeract | ||||||||||
90 | t0,1,4{4,3,3,3,3,3,3} Steritruncated 8-cube Cellitruncated octeract | ||||||||||
91 | t0,1,3{4,3,3,3,3,3,3} Runcitruncated 8-cube Prismatotruncated octeract | ||||||||||
92 | t0,1,2{4,3,3,3,3,3,3} Cantitruncated 8-cube Great rhombated octeract | ||||||||||
93 | t0,1,2,3{3,3,3,3,3,3,4} Runcicantitruncated 8-orthoplex Great prismated diacosipentacontahexazetton | ||||||||||
94 | t0,1,2,4{3,3,3,3,3,3,4} Stericantitruncated 8-orthoplex Celligreatorhombated diacosipentacontahexazetton | ||||||||||
95 | t0,1,3,4{3,3,3,3,3,3,4} Steriruncitruncated 8-orthoplex Celliprismatotruncated diacosipentacontahexazetton | ||||||||||
96 | t0,2,3,4{3,3,3,3,3,3,4} Steriruncicantellated 8-orthoplex Celliprismatorhombated diacosipentacontahexazetton | ||||||||||
97 | t1,2,3,4{3,3,3,3,3,3,4} Biruncicantitruncated 8-orthoplex Great biprismated diacosipentacontahexazetton | ||||||||||
98 | t0,1,2,5{3,3,3,3,3,3,4} Penticantitruncated 8-orthoplex Terigreatorhombated diacosipentacontahexazetton | ||||||||||
99 | t0,1,3,5{3,3,3,3,3,3,4} Pentiruncitruncated 8-orthoplex Teriprismatotruncated diacosipentacontahexazetton | ||||||||||
100 | t0,2,3,5{3,3,3,3,3,3,4} Pentiruncicantellated 8-orthoplex Teriprismatorhombated diacosipentacontahexazetton | ||||||||||
101 | t1,2,3,5{3,3,3,3,3,3,4} Bistericantitruncated 8-orthoplex Bicelligreatorhombated diacosipentacontahexazetton | ||||||||||
102 | t0,1,4,5{3,3,3,3,3,3,4} Pentisteritruncated 8-orthoplex Tericellitruncated diacosipentacontahexazetton | ||||||||||
103 | t0,2,4,5{3,3,3,3,3,3,4} Pentistericantellated 8-orthoplex Tericellirhombated diacosipentacontahexazetton | ||||||||||
104 | t1,2,4,5{3,3,3,3,3,3,4} Bisteriruncitruncated 8-orthoplex Bicelliprismatotruncated diacosipentacontahexazetton | ||||||||||
105 | t0,3,4,5{3,3,3,3,3,3,4} Pentisteriruncinated 8-orthoplex Tericelliprismated diacosipentacontahexazetton | ||||||||||
106 |