Barnes G-function

From Wikipedia, the free encyclopedia
Jump to: navigation, search

In mathematics, the Barnes G-function G(z) is a function that is an extension of superfactorials to the complex numbers. It is related to the Gamma function, the K-function and the Glaisher–Kinkelin constant, and was named after mathematician Ernest William Barnes.[1] Up to elementary factors, it is a special case of the double gamma function.

Formally, the Barnes G-function is defined in the following Weierstrass product form:

G(1+z)=(2\pi )^{z/2}{\text{exp}}\left(-{\frac {z+z^{2}(1+\gamma )}{2}}\right)\,\prod _{k=1}^{\infty }\left\{\left(1+{\frac {z}{k}}\right)^{k}{\text{exp}}\left({\frac {z^{2}}{2k}}-z\right)\right\}

where \,\gamma \, is the Euler–Mascheroni constant, exp(x) = ex, and ∏ is capital pi notation.

Functional equation and integer arguments[edit]

The Barnes G-function satisfies the functional equation

G(z+1)=\Gamma (z)\,G(z)

with normalisation G(1) = 1. Note the similarity between the functional equation of the Barnes G-function and that of the Euler Gamma function:

\Gamma (z+1)=z\,\Gamma (z).

The functional equation implies that G takes the following values at integer arguments:

G(n)={\begin{cases}0&{\text{if }}n=-1,-2,\dots \\\prod _{i=0}^{n-2}i!&{\text{if }}n=0,1,2,\dots \end{cases}}

(in particular, \,G(0)=G(1)=1\,) and thus

G(n)={\frac {(\Gamma (n))^{n-1}}{K(n)}}

where \,\Gamma (x)\, denotes the Gamma function and K denotes the K-function. The functional equation uniquely defines the G function if the convexity condition: \,{\frac {d^{3}}{dx^{3}}}G(x)\geq 0\, is added.[2]

Reflection formula 1.0[edit]

The difference equation for the G function, in conjunction with the functional equation for the Gamma function, can be used to obtain the following reflection formula for the Barnes G function (originally proved by Hermann Kinkelin):

\log G(1-z)=\log G(1+z)-z\log 2\pi +\int _{0}^{z}\pi x\cot \pi x\,dx.

The logtangent integral on the right-hand side can be evaluated in terms of the Clausen function (of order 2), as is shown below:

2\pi \log \left({\frac {G(1-z)}{G(1+z)}}\right)=2\pi z\log \left({\frac {\sin \pi z}{\pi }}\right)+{\text{Cl}}_{2}(2\pi z)

The proof of this result hinges on the following evaluation of the cotangent integral: introducing the notation \,Lc(z)\, for the logtangent integral, and using the fact that \,(d/dx)\log(\sin \pi x)=\pi \cot \pi x\,, an integration by parts gives

{\begin{aligned}Lc(z)&=\int _{0}^{z}\pi x\cot \pi x\,dx\\&=z\log(\sin \pi z)-\int _{0}^{z}\log(\sin \pi x)\,dx\\&=z\log(\sin \pi z)-\int _{0}^{z}{\Bigg [}\log(2\sin \pi x)-\log 2{\Bigg ]}\,dx\\&=z\log(2\sin \pi z)-\int _{0}^{z}\log(2\sin \pi x)\,dx.\end{aligned}}

Performing the integral substitution \,y=2\pi x\Rightarrow dx=dy/(2\pi )\, gives

z\log(2\sin \pi z)-{\frac {1}{2\pi }}\int _{0}^{2\pi z}\log \left(2\sin {\frac {y}{2}}\right)\,dy.

The Clausen function – of second order – has the integral representation

{\text{Cl}}_{2}(\theta )=-\int _{0}^{\theta }\log {\Bigg |}2\sin {\frac {x}{2}}{\Bigg |}\,dx.

However, within the interval \,0<\theta <2\pi \,, the absolute value sign within the integrand can be omitted, since within the range the 'half-sine' function in the integral is strictly positive, and strictly non-zero. Comparing this definition with the result above for the logtangent itegral, the following relation clearly holds:

Lc(z)=z\log(2\sin \pi z)+{\frac {1}{2\pi }}\,{\text{Cl}}_{2}(2\pi z).

Thus, after a slight rearrangement of terms, the proof is complete:

2\pi \log \left({\frac {G(1-z)}{G(1+z)}}\right)=2\pi z\log \left({\frac {\sin \pi z}{\pi }}\right)+{\text{Cl}}_{2}(2\pi z)\,.\,\Box

Using the relation \,G(1+z)=\Gamma (z)\,G(z)\, and dividing the reflection formula by a factor of \,2\pi \, gives the equivalent form:

\log \left({\frac {G(1-z)}{G(z)}}\right)=z\log \left({\frac {\sin \pi z}{\pi }}\right)+\log \Gamma (z)+{\frac {1}{2\pi }}{\text{Cl}}_{2}(2\pi z)


Ref: see Adamchik below for an equivalent form of the reflection formula, but with a different proof.

Reflection formula 2.0[edit]

Replacing z with (1/2) − z'' in the previous reflection formula gives, after some simplification, the equivalent formula shown below (involving Bernoulli polynomials):

\log \left({\frac {G\left({\frac {1}{2}}+z\right)}{G\left({\frac {1}{2}}-z\right)}}\right)=
\log \Gamma \left({\frac {1}{2}}-z\right)+B_{1}(z)\log 2\pi -{\frac {1}{2}}\log 2+\pi \int _{0}^{z}B_{1}(x)\tan \pi x\,dx

Taylor series expansion[edit]

By Taylor's theorem, and considering the logarithmic derivatives of the Barnes function, the following series expansion can be obtained:

\log G(1+z)={\frac {z}{2}}\log 2\pi -\left({\frac {z+(1+\gamma )z^{2}}{2}}\right)+\sum _{k=2}^{\infty }(-1)^{k}{\frac {\zeta (k)}{k+1}}z^{k+1}.

It is valid for \,0<z<1\,. Here, \,\zeta (x)\, is the Riemann Zeta function:

\zeta (s)=\sum _{n=1}^{\infty }{\frac {1}{n^{s}}}.

Exponentiating both sides of the Taylor expansion gives:

{\begin{aligned}G(1+z)&=\exp \left[{\frac {z}{2}}\log 2\pi -\left({\frac {z+(1+\gamma )z^{2}}{2}}\right)+\sum _{k=2}^{\infty }(-1)^{k}{\frac {\zeta (k)}{k+1}}z^{k+1}\right]\\&=(2\pi )^{z/2}\exp \left[-{\frac {z+(1+\gamma )z^{2}}{2}}\right]\exp \left[\sum _{k=2}^{\infty }(-1)^{k}{\frac {\zeta (k)}{k+1}}z^{k+1}\right].\end{aligned}}

Comparing this with the Weierstrass product form of the Barnes function gives the following relation:

\exp \left[\sum _{k=2}^{\infty }(-1)^{k}{\frac {\zeta (k)}{k+1}}z^{k+1}\right]=\prod _{k=1}^{\infty }\left\{\left(1+{\frac {z}{k}}\right)^{k}{\text{exp}}\left({\frac {z^{2}}{2k}}-z\right)\right\}

Multiplication formula[edit]

Like the Gamma function, the G-function also has a multiplication formula:[3]

G(nz)=K(n)n^{n^{2}z^{2}/2-nz}(2\pi )^{-{\frac {n^{2}-n}{2}}z}\prod _{i=0}^{n-1}\prod _{j=0}^{n-1}G\left(z+{\frac {i+j}{n}}\right)

where K(n) is a constant given by:

K(n)=e^{-(n^{2}-1)\zeta ^{\prime }(-1)}\cdot n^{\frac {5}{12}}\cdot (2\pi )^{(n-1)/2}\,=\,(Ae^{-{\frac {1}{12}}})^{n^{2}-1}\cdot n^{\frac {5}{12}}\cdot (2\pi )^{(n-1)/2}.

Here \zeta ^{\prime } is the derivative of the Riemann zeta function and A is the Glaisher–Kinkelin constant.

Asymptotic expansion[edit]

The logarithm of G(z + 1) has the following asymptotic expansion, as established by Barnes:

{\begin{aligned}\log G(z+1)&={\frac {1}{12}}-\log A+{\frac {z}{2}}\log 2\pi +\left({\frac {z^{2}}{2}}-{\frac {1}{12}}\right)\log z\\&\quad -{\frac {3z^{2}}{4}}+\sum _{k=1}^{N}{\frac {B_{2k+2}}{4k\left(k+1\right)z^{2k}}}~+~O\left({\frac {1}{z^{2N+2}}}\right).\end{aligned}}

Here the B_{k} are the Bernoulli numbers and A is the Glaisher–Kinkelin constant. (Note that somewhat confusingly at the time of Barnes [4] the Bernoulli number B_{2k} would have been written as (-1)^{k+1}B_{k}, but this convention is no longer current.) This expansion is valid for z in any sector not containing the negative real axis with |z| large.

Relation to the Loggamma integral[edit]

The parametric Loggamma can be evaluated in terms of the Barnes G-function (Ref: this result is found in Adamchik below, but stated without proof):

\int _{0}^{z}\log \Gamma (x)\,dx={\frac {z(1-z)}{2}}+{\frac {z}{2}}\log 2\pi +z\log \Gamma (z)-\log G(1+z)

The proof is somewhat indirect, and involves first considering the logarithmic difference of the Gamma function and Barnes G-function:

z\log \Gamma (z)-\log G(1+z)

where

{\frac {1}{\Gamma (z)}}=ze^{\gamma z}\prod _{k=1}^{\infty }\left\{\left(1+{\frac {z}{k}}\right)e^{-z/k}\right\}

and \,\gamma \, is the Euler–Mascheroni constant.

Taking the logarithm of the Weierstrass product forms of the Barnes function and Gamma function gives:

z\log \Gamma (z)-\log G(1+z)=-z\log \left({\frac {1}{\Gamma (z)}}\right)-\log G(1+z)=
-z\left[\log z+\gamma z+\sum _{k=1}^{\infty }{\Bigg \{}\log \left(1+{\frac {z}{k}}\right)-{\frac {z}{k}}{\Bigg \}}\right]
-\left[{\frac {z}{2}}\log 2\pi -{\frac {z}{2}}-{\frac {z^{2}}{2}}-{\frac {z^{2}\gamma }{2}}+\sum _{k=1}^{\infty }{\Bigg \{}k\log \left(1+{\frac {z}{k}}\right)+{\frac {z^{2}}{2k}}-z{\Bigg \}}\right]

A little simplification and re-ordering of terms gives the series expansion:

\sum _{k=1}^{\infty }{\Bigg \{}(k+z)\log \left(1+{\frac {z}{k}}\right)-{\frac {z^{2}}{2k}}-z{\Bigg \}}=
-z\log z-{\frac {z}{2}}\log 2\pi +{\frac {z}{2}}+{\frac {z^{2}}{2}}-{\frac {z^{2}\gamma }{2}}-z\log \Gamma (z)+\log G(1+z)

Finally, take the logarithm of the Weierstrass product form of the Gamma function, and integrate over the interval \,[0,\,z]\, to obtain:

\int _{0}^{z}\log \Gamma (x)\,dx=-\int _{0}^{z}\log \left({\frac {1}{\Gamma (x)}}\right)\,dx=
-(z\log z-z)-{\frac {z^{2}\gamma }{2}}-\sum _{k=1}^{\infty }{\Bigg \{}(k+z)\log \left(1+{\frac {z}{k}}\right)-{\frac {z^{2}}{2k}}-z{\Bigg \}}

Equating the two evaluations completes the proof:

\int _{0}^{z}\log \Gamma (x)\,dx={\frac {z(1-z)}{2}}+{\frac {z}{2}}\log 2\pi +z\log \Gamma (z)-\log G(1+z)\,.\,\Box

References[edit]

  1. ^ E. W. Barnes, "The theory of the G-function", Quarterly Journ. Pure and Appl. Math. 31 (1900), 264–314.
  2. ^ M. F. Vignéras, L'équation fonctionelle de la fonction zêta de Selberg du groupe mudulaire SL(2,\mathbb {Z} ), Astérisque 61, 235–249 (1979).
  3. ^ I. Vardi, Determinants of Laplacians and multiple gamma functions, SIAM J. Math. Anal. 19, 493–507 (1988).
  4. ^ E. T. Whittaker and G.N.Watson, "A course of modern analysis", CUP.