Barton–Kellogg reaction

From Wikipedia, the free encyclopedia
  (Redirected from Barton-Kellogg reaction)
Jump to: navigation, search
Barton–Kellogg reaction
Named after Sir Derek Barton
Richard M. Kellogg
Reaction type Coupling reaction
RSC ontology ID RXNO:0000495

The Barton–Kellogg reaction is a coupling reaction between a diazo compound and a thioketone through a diazo intermediate forming an alkene.[1][2][3] The Barton–Kellogg reaction is also known as Barton–Kellogg olefination[4] and Barton olefin synthesis.[5]

The Barton-Kellogg reaction

This reaction was pioneered by Hermann Staudinger,[6] and the reaction also goes by the name Staudinger type diazo-thioketone coupling.

Reaction mechanism[edit]

In the reaction mechanism for this reaction the diazo compound is a 1,3-dipole which reacts with the thioketone in a 1,3-dipolar cycloaddition to a thiadiazoline. This intermediate is unstable and through nitrogen gas expulsion and formation of an intermediate thiocarbonyl ylide it forms a stable episulfide. Triphenylphosphine opens the three-membered ring and then forms a sulfaphosphatane in a manner similar to the Wittig reaction. In the final step triphenylphosphine sulfide is expulsed liberating the alkene.

Barton-Kellogg reaction mechanism


The diazo compound can be obtained from a ketone by reaction with hydrazine to a hydrazone followed by oxidation. Many reagents exist for this conversion for example silver(I) oxide and (bis(trifluoroacetoxy)iodo)benzene.[7] The thioketone required for this reaction can be obtained from a ketone and phosphorus pentasulfide. Desulfurization of the episulfide can be accomplished by many phosphines and also by copper powder.

Barton-Kellogg reaction molecular motor synthesis

The main advantage of this reaction over the McMurry reaction is the notion that the reaction can take place with two different ketones. In this regard the diazo-thioketone coupling is a cross-coupling rather than a homocoupling.


  1. ^ D. H. R. Barton & B. J. Willis (1970). "Olefin synthesis by twofold extrusion processes". J. Chem. Soc. D (19): 1225. doi:10.1039/C29700001225. 
  2. ^ R. M. Kellogg & S. Wassenaar (1970). "Thiocarbonyl ylides. An approach to "tetravalent sulfur" compounds". Tetrahedron Lett. 11 (23): 1987. doi:10.1016/S0040-4039(01)98134-1. 
  3. ^ R. M. Kellogg (1976). "The molecules R2CXCR2 including azomethine, carbonyl and thiocarbonyl ylides. Their syntheses, properties and reactions". Tetrahedron. 32 (18): 2165. doi:10.1016/0040-4020(76)85131-9. 
  4. ^ "Barton-Kellogg olefination". Comprehensive Organic Name Reactions and Reagents. 2010. pp. 249–253. doi:10.1002/9780470638859.conrr056. 
  5. ^ "Barton olefin synthesis". Merck Index (15th ed.). 
  6. ^ H. Staudinger & J. Siegwart (1920). "Einwirkungen von aliphatischen Diazoverbindungen auf Thioketone". Helv. Chim. Acta. 3: 833. doi:10.1002/hlca.19200030178. 
  7. ^ Matthijs K. J. ter Wiel; Javier Vicario; Stephen G. Davey; Auke Meetsma & Ben L. Feringa (2005). "New procedure for the preparation of highly sterically hindered alkenes using a hypervalent iodine reagent". Organic & Biomolecular Chemistry. 3: 28–30. doi:10.1039/b414959a.