Wood's metal

From Wikipedia, the free encyclopedia
  (Redirected from Bendalloy)
Jump to navigation Jump to search
Wood's metal

Wood's metal, also known as Lipowitz's alloy or by the commercial names Cerrobend, Bendalloy, Pewtalloy and MCP 158, is a eutectic, fusible alloy with a melting point of approximately 70 °C (158 °F). It is a eutectic alloy of 50% bismuth, 26.7% lead, 13.3% tin, and 10% cadmium by weight.[1][2] The alloy is named for Barnabas Wood.[3]


Wood's metal is useful as a low-melting solder, low-temperature casting metal, high-temperature coupling fluid in heat baths, and as a fire-melted valve element in fire sprinkler systems in buildings. Medical gas cylinders in the United Kingdom have a Wood's metal seal which melts in fire, allowing the gas to escape and reducing the risk of gas explosion.

Wood's metal is commonly used as a filler when bending thin-walled metal tubes. For this use the tubing is filled with molten Wood's metal. After this filler solidifies the tubing is bent. The filler prevents the tube collapsing. The Wood's metal is then removed by heating, often by immersion in boiling water.

Other uses include making custom-shaped apertures and blocks (for example, electron-beam cutouts and lung blocks) for medical radiation treatment, making casts of keys that are hard to duplicate otherwise[4] and making metal inlays in wood.

Wood's metal is useful in machine shops and technical laboratories when alternative means of holding delicate parts become necessary. It is used as an additional hardened layer to allow the proper gripping and machining of an object. The object is immersed in melted Wood's metal to completely or partially coat it, forming a layer from a few millimeters up to few centimeters thick, depending on how the object will be held in place. After cooling, the new assembly is clamped by conventional means. This method is most useful for one-off or limited production workpieces, when construction of a special clamping or holding jig would be neither cost-effective nor offer maximum holding capability.

Wood's metal is also useful for repairing antiques. For example, a bent piece of sheet metal may be repaired by casting a Wood's metal die from an intact example. The low melting temperature of Wood's metal makes it unlikely this will harm the original. The damaged piece can then be clamped in the die and slowly tightened to form it back into shape.

Wood's metal has long been used by model railroad enthusiasts to add weight to locomotives, increasing traction and the number of cars that can be pulled.

Wood's metal is also used in the making of extracellular electrodes for the electro-physiological recording of neural activity.[5]

Like other fusible alloys, e.g. Rose's metal, Wood's metal can be used as a heat transfer medium in hot baths. Hot baths with Rose's and Wood's metals are not in routine use but are employed for temperatures above 220 °C (428 °F).[6]

Wood's metal has a modulus of elasticity of 12.7 GPa and a yield strength of 26.2 MPa.[7]


Wood's metal is toxic because it contains lead and cadmium, and contamination of bare skin is considered harmful. Vapour from cadmium-containing alloys is also known to pose a danger to humans. Cadmium poisoning carries the risk of cancer, anosmia (loss of sense of smell), and damage to the liver, kidneys, nerves, bones, and respiratory system. Field's metal is a non-toxic alternative.

The dust may form flammable mixtures with air.

Related alloys[edit]

Several other alloys with similar low melting points are listed here.

Alloy Melting point Eutectic? Bismuth Lead Tin Indium Cadmium Thallium Gallium Antimony
Rose's metal 98 °C (208 °F) no 50% 25% 25%
Cerrosafe 74 °C (165 °F) no 42.5% 37.7% 11.3% 8.5%
Wood's metal 70 °C (158 °F) yes 50% 26.7% 13.3% 10%
Field's metal 62 °C (144 °F) yes 32.5% 16.5% 51%
Cerrolow 136 58 °C (136 °F) yes 49% 18% 12% 21%
Cerrolow 117 47.2 °C (117 °F) yes 44.7% 22.6% 8.3% 19.1% 5.3%
Bi-Pb-Sn-Cd-In-Tl 41.5 °C (107 °F) yes 40.3% 22.2% 10.7% 17.7% 8.1% 1.1%
Galinstan −19 °C (−2 °F) yes <1.5% 9.5-10.5% 21-22% 68-69% <1.5%


  1. ^ G. W. A. Milne, ed. (2005). Gardner's Commercially Important Chemicals: Synonyms, Trade Names, and Properties. John Wiley & Sons. ISBN 978-0-471-73661-5.
  2. ^ Khan FM, Gibbons JP. "The Physics of Radiation Therapy, 5th ed". Wolters Kluwer.
  3. ^ Jensen, William B. (2010). "The Origin of the Name "Onion's Fusible Alloy"" (Archived Reprint). Journal of Chemical Education. 87 (10): 1050–1051. Bibcode:2010JChEd..87.1050J. doi:10.1021/ed100764f.
  4. ^ DeviantOllam (2019-05-01), Copying Keys via a Mold and Cast Attack, retrieved 2019-05-04
  5. ^ Frank K, and Becker MC. Microelectrodes for recording and stimulation. In: Physical techniques in biological research, edited by Nastuk WL. New York: Academic Press, 1964, p. 23–84.
  6. ^ Sambamurthy, K. (2007). Pharmaceutical Engineering. ISBN 9788122411690.
  7. ^ Do-Gyoon, Kim (February 2006). "Evaluation of Filler Materials Used for Uniform Load Distribution at Boundaries During Structural Biomechanical Testing of Whole Vertebrae". Journal of Biomechanical Engineering. 128 (1): 161–5. CiteSeerX doi:10.1115/1.2133770. PMID 16532630.


  • Birchon's Dictionary of Metallurgy, London, 1965
  • Experimental techniques in low-temperature physics, G. K. White, Oxford University Press, Third Edition

External links[edit]