Jump to content

Berkson error model

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Marcocapelle (talk | contribs) at 21:39, 23 November 2016 (removed Category:Error; added Category:Errors and residuals using HotCat). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

The Berkson error model is a description of random error (or misclassification) in measurement. Unlike classical error, Berkson error causes little or no bias in the measurement. It was proposed by Joseph Berkson in an article entitled “Are there two regressions?,”[1] published in 1950.

An example of Berkson error arises in exposure assessment in epidemiological studies. Berkson error may predominate over classical error in cases where exposure data are highly aggregated. While this kind of error reduces the power of a study, risk estimates themselves are not themselves attenuated (as would be the case where random error predominates).

References

  1. ^ Berkson, J. (1950). "Are There Two Regressions?". Journal of the American Statistical Association. 45 (250): 164–180. doi:10.1080/01621459.1950.10483349. JSTOR 2280676.

Further reading