From Wikipedia, the free encyclopedia
Preferred IUPAC name
Propane-2,2-diylbis[4,1-phenyleneoxy(2-hydroxypropane-3,1-diyl)] bis(2-methylprop-2-enoate)
Other names
Bowen monomer; Silux; Delton; NuvaSeal; Retroplast
3D model (JSmol)
ECHA InfoCard 100.014.880 Edit this at Wikidata
EC Number
  • 216-367-7
  • InChI=1S/C29H36O8/c1-19(2)27(32)36-17-23(30)15-34-25-11-7-21(8-12-25)29(5,6)22-9-13-26(14-10-22)35-16-24(31)18-37-28(33)20(3)4/h7-14,23-24,30-31H,1,3,15-18H2,2,4-6H3
  • CC(=C)C(=O)OCC(COC1=CC=C(C=C1)C(C)(C)C2=CC=C(C=C2)OCC(COC(=O)C(=C)C)O)O
Molar mass 512.599 g·mol−1
Appearance colorless oil
GHS labelling:
GHS05: CorrosiveGHS07: Exclamation mark
H315, H317, H318, H319
P261, P264, P272, P280, P302+P352, P305+P351+P338, P310, P321, P332+P313, P333+P313, P337+P313, P362, P363, P501
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Bis-GMA (bisphenol A-glycidyl methacrylate) is a resin commonly used in dental composite, dental sealants.[1][2] and dental cement. It is the diester derived from methacrylic acid and the bisphenol A diglycidyl ether. Bearing two polymerizable groups, it is prone to form a crosslinked polymer that is used in dental restorations.[3] For dental work, highly viscous bis-GMA is mixed with aluminosilicate particles, crushed quartz and other related acrylates; changes to component ratios lead to different physical properties in the end product.[4] Bis-GMA was incorporated into composite dental resins in 1962 by Rafael Bowen.[3] Until matrix development work in the early 2000s, bis-GMA and related methacrylate monomers were the only options for organic matrix composition.[5]


Concerns have been raised about the potential for bis-GMA to break down into or be contaminated with the related compound bisphenol A.[6] However, no negative health effects of bis-GMA use in dental resins have been found.[2][7]


Salivary esterases can slowly degrade bis-GMA-based sealants, forming Bis-HPPP.[8]


  1. ^ CID 15284 from PubChem. Retrieved 27 May 2022.
  2. ^ a b Ahovuo-Saloranta, Anneli; Forss, Helena; Walsh, Tanya; Nordblad, Anne; Mäkelä, Marjukka; Worthington, Helen V. (31 July 2017). "Pit and fissure sealants for preventing dental decay in permanent teeth". The Cochrane Database of Systematic Reviews. 2017 (7): CD001830. doi:10.1002/14651858.CD001830.pub5. ISSN 1469-493X. PMC 6483295. PMID 28759120.
  3. ^ a b Craig RG, Welker D, Rothaut J, Krumbholz KG, Stefan KP, Dermann K, Rehberg HJ, Franz G, Lehmann KM, Borchert M (2006). "Dental Materials". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a08_251.pub2.
  4. ^ Zimmerli B, Strub M, Jeger F, Stadler O, Lussi A (November 2010). "Composite Materials: Composition, properties and clinical applications" (PDF). Schweiz Monatsschr Zahnmed. 120 (11): 972–9. PMID 21243545. Retrieved 28 May 2022.
  5. ^ Fugolin AP, Pfeifer CS (21 July 2017). "New Resins for Dental Composites". J. Dent. Res. 96 (10): 1085–91. doi:10.1177/0022034517720658. PMC 5582688. PMID 28732183.
  6. ^ LaBauve JR, Long KN, Hack GD, Bashirelahi N (2012). "What every dentist should known about bisphenol A". General Dentistry. 60 (5): 424–32. PMID 23032231.
  7. ^ Soderholm KJ, Mariotti A (February 1999). "Bis-GMA–based resins in dentistry: are they safe?". The Journal of the American Dental Association. 130 (2): 201–209. doi:10.14219/jada.archive.1999.0169. PMID 10036843.(subscription required)
  8. ^ Shokati, Babak; Tam, Laura Eva; Santerre, J. Paul; Finer, Yoav (2010). "Effect of salivary esterase on the integrity and fracture toughness of the dentin-resin interface". Journal of Biomedical Materials Research Part B: Applied Biomaterials. 94 (1): 230–7. doi:10.1002/jbm.b.31645. PMID 20524199.

Further reading[edit]