Bloch wave – MoM method

From Wikipedia, the free encyclopedia
Jump to: navigation, search

Bloch wave – MoM is a first principles technique for determining the photonic band structure of triply periodic electromagnetic media such as photonic crystals. This technique uses the method of moments (MoM) in combination with a Bloch wave expansion of the electromagnetic field in the structure. It is based on the 3-dimensional spectral domain method (Kastner [1987]), specialized to periodic media. This approach is very efficient in terms of the number of plane waves needed for good convergence and is analogous to the spectral domain MoM method commonly used for analyzing 2D periodic structures such as frequency selective surfaces (FSS). In both cases, the field is expanded as a set of eigenfunction modes (either a Bloch wave in 3D or a discrete plane wave - aka Floquet mode - spectrum in 2D), and an integral equation is enforced on the surface of the scatterers in each unit cell. In the FSS case, the unit cell is 2-dimensional and in the photonic crystal case, the unit cell is 3-dimensional.

Field equations for 3D PEC photonic crystal structures[edit]

For perfectly electrically conducting (PEC) structures admitting only electric current sources J, the electric field E is related to the vector magnetic potential A via the well-known relation:

and the vector magnetic potential is in turn related to the source currents via:

where

Bloch wave expansion of the fields[edit]

To solve equations (1.1) and (1.2) within the infinite periodic volume, we may assume a Bloch wave expansion for all currents, fields and potentials:

where for simplicity, we assume an orthogonal lattice in which α only depends on m, β only depends on n and γ only depends on p. In the equations above,

and,

where lx, ly, lz are the unit cell dimensions in the x,y,z directions respectively, λ is the effective wavelength in the crystal and θ0, φ0 are the directions of propagation in spherical coordinates. Note that k in equations (1.1) and (1.2) comes from the time derivative in Maxwell's equations and is the free space propagation constant (actually, the propagation constant of whatever material the metallic scatterers are embedded in), proportional to frequency as we see in equation (1.3). On the other hand, k0 in the equations above comes from our assumed Bloch wave solution given by equations (2.1) & (2.2). As a result, it represents the propagation constant in the periodic medium. These two k's, i.e. the free space propagation constant and the propagation constant of the Bloch wave, are in general different thereby allowing for dispersion in our solution.

The Bloch wave expansions in equations (2.1) are nothing more than exponential Fourier series multiplied by the cell-to-cell propagation factor: The Bloch wave expansions are chosen since any field solution within an infinite periodic volume must have the same periodicity as the medium itself, or stated another way, the fields in neighboring cells must be identical up to a (real or complex) propagation factor. This is not true for doped media (media having scattered point defects) which can give rise to localized (decaying) fields.

Integral equation for PEC media[edit]

Substituting equations (2.1) into (1.1) and (1.2) yields the spectral domain Greens function relating the radiated electric field to its source currents:

where,


is the tensor Green's function in the spectral domain. Note that the spatial domain convolution has been transformed into a simple multiplication in the spectral domain, consistent with the convolution theorem for Fourier transforms.


With this, the electric field boundary condition on the surface of PEC material within a unit cell becomes:


Since we are seeking characteristic modes (eigenmodes) of the structure, there is no impressed E-field on the RHS of this electric field integral equation (EFIE). Equation (3.3) is not strictly correct since only the tangential components of electric field are actually zero on the surface of the PEC scatterer. This inexactness will be resolved presently when we test with the current basis functions, defined as residing on the surface of the scatterer.

Method of Moments solution[edit]

As is usual in the method of moments, we assume an expansion for the source currents over some known set of basis functions with unknown weighting coefficients Jj:

Substituting (4.1) into (3.3) and then testing the resulting equation with the i-th current basis function (i.e., dotting from the left and integrating over the domain of the i-th current basis function, thereby completing the quadratic form) produces the i-th row of the matrix eigenvalue problem as:

This matrix equation is very simple to implement and requires only that the 3D FT of the basis functions be computed, preferably in closed form (see Scott [1998]). With this method, computing bands of a 3D photonic crystal is as easy as computing reflection and transmission from a 2D periodic surface. In fact, equation (4.2) is identical to the basic EFIE for a freestanding PEC FSS (Scott [1989] or Frequency selective surface eq. (4.2)), the only difference being the stronger singularity in 3D which accelerates convergence of the triple sums.

We see from (4.2) that the EFIE can be singular whenever the free space wavenumber is exactly equal to one of the wave numbers in any of the 3 periodic coordinate directions. This can happen for example when the free space wavelength exactly equals the lattice spacing. This is a statistically rare occurrence in computational practice and corresponds to a propagation anomaly similar to a Wood's anomaly for gratings.

The advantages of this method over both the plane wave expansion method and the FEM method include both mathematical and computational simplicity. Electric current unknowns are only needed on the surface of the scatterers in the unit cell, so the matrix eigenvalue problem can be as small as 1x1 for simple scatterers at low frequencies. As a result, this equation can be easily solved for complex structures even on a low-grade PC.

Computing bands[edit]

To compute bands of the crystal (i.e. k-k0 diagrams), we may assume values for (k0, θ0, φ0) and then search for those values of k which drive the determinant of the impedance matrix to zero. Basically we have to try different values of frequency with pre-selected values of propagation constant and propagation direction - through trial and error - until we find a combination that produces the desired zero field condition on the surface of the array of scatterers. Equation (4.2) has been used to compute bands in various types of doped and undoped photonic crystals (Scott[1998], Scott [2002], both available on ResearchGate).

See also[edit]

References[edit]

  • Kastner, Raphael (1987), On the Singularity of the Full Spectral Green's Dyad, IEEE Trans. on Antennas and Propagation, vol. AP-35, No. 11, pp. 1303–1305 
  • Scott, Craig (1989), The Spectral Domain Method in Electromagnetics, Artech House, ISBN 0-89006-349-4 
  • Scott, Craig (1998), Analysis, Design and Testing of Integrated Structural Radomes Built Using Photonic Bandgap Structures, 1998 IEEE Aerospace Conf. Aspen CO, pp. 463 - 479, available on ResearchGate 
  • Scott, Craig (2002), Spectral Domain Analysis of Doped Electromagnetic Crystal Radomes Using the Method of Moments, 2002 IEEE Aerospace Conf. Big Sky MT, paper #504, pp. 2-957 - 2-963, available on ResearchGate 

External links[edit]