Boron arsenide

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
Boron arsenide
Boron-arsenide-unit-cell-1963-CM-3D-balls.png
Identifiers
ChemSpider
Properties
BAs
Molar mass 85.733 g/mol[1]
Appearance Brown cubic crystals[1]
Density 5.22 g/cm3[1]
Melting point 1,100 °C (2,010 °F; 1,370 K) decomposes[1]
Insoluble
Band gap 1.50 eV
Thermal conductivity 1300 W/(m·K) (300 K) [2]
Structure[3]
Cubic (sphalerite), cF8, No. 216
F43m
a = 0.4777 nm
4
Related compounds
Other anions
Boron nitride
Boron phosphide
Boron antimonide
Other cations
Aluminium arsenide
Gallium arsenide
Indium arsenide
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☑Y verify (what is ☑Y☒N ?)
Infobox references
Boron subarsenide
B12As2 3D side view.jpg
Identifiers
Properties
B12As2
Molar mass 279.58 g/mol
Density 3.56 g/cm3[4]
Insoluble
Band gap 3.47 eV
Structure[5]
Rhombohedral, hR42, No. 166
R3m
a = 0.6149 nm, b = 0.6149 nm, c = 1.1914 nm
α = 90°, β = 90°, γ = 120°
6
Related compounds
Other anions
Boron suboxide
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Infobox references

Boron arsenide is a chemical compound involving boron and arsenic, usually with a chemical formula BAs. Other boron arsenide compounds are known, such as the subarsenide B12As2[6]. Chemical synthesis of cubic BAs is very challenging and its single crystal forms usually have defects.

Properties[edit]

BAs is a cubic (sphalerite) semiconductor in the III-V family with a lattice constant of 0.4777 nm and an indirect bandgap of approximately 1.5 eV.[7] It can be alloyed with gallium arsenide to produce ternary and quaternary semiconductors.[8] Cubic BAs is reported to decompose to the subarsenide B12As2 at temperatures above 920 °C.[9]

Boron arsenide has a melting point of 2076°C. The thermal conductivity is very high around 1300 W/mK at 300 K.[10]

Boron subarsenide[edit]

Boron arsenide also occurs as subarsenides, including the icosahedral boride B12As2.[6] It belongs to R3m space group with a rhombohedral structure based on clusters of boron atoms and two-atom As-As chains. It is a wide-bandgap semiconductor (3.47 eV) with the extraordinary ability to “self-heal” radiation damage.[11] This form can be grown on substrates such as silicon carbide.[12]

Applications[edit]

Boron arsenide has been proposed as a material for solar cell fabrication,[8][13] although it is not currently used for this purpose.

An ab initio theory has predicted that the thermal conductivity of cubic BAs is remarkably high, over 2,000 W/(m·K) at room temperature, which is comparable to that of diamond and graphite.[14] Subsequent measurements yielded a value of only 190 W/(m·K) due to high density of defects.[15] More recent first principles calculations incorporating four-phonon scattering predict a thermal conductivity of 1400 W/(m·K) [16]. Defect-free boron arsenide crystals have been experimentally realized for the first time and measured with an ultrahigh thermal conductivity of 1300 W/(m·K), consistent with theory predictions [17]. Crystals with small density of defects have shown thermal conductivity of 900-1000 W/mK.[18][19]

References[edit]

  1. ^ a b c d Haynes, William M., ed. (2011). CRC Handbook of Chemistry and Physics (92nd ed.). Boca Raton, FL: CRC Press. p. 4.53. ISBN 1439855110. 
  2. ^ Kang, Joon Sang; Li, Man; Wu, Huan; Nguyen, Huuduy; Hu, Yongjie (2018). "Experimental observation of high thermal conductivity in boron arsenide". Science: eaat5522. doi:10.1126/science.aat5522. 
  3. ^ Perri, J. A; La Placa, S; Post, B (1958). "New group III-group V compounds: BP and BAs". Acta Crystallographica. 11 (4): 310. doi:10.1107/S0365110X58000827. 
  4. ^ Villars, Pierre (ed.) "B12As2 (B6As) Crystal Structure" in Inorganic Solid Phases, Springer, Heidelberg (ed.) SpringerMaterials
  5. ^ Morosin, B; Aselage, T. L; Feigelson, R. S (2011). "Crystal Structure Refinements of Rhombohedral Symmetry Materials Containing Boron-Rich Icosahedra". MRS Proceedings. 97. doi:10.1557/PROC-97-145. 
  6. ^ a b "Semiconductor Research". University Bristol, Applied Spectroscopy Group. Archived from the original on 2014-02-01. 
  7. ^ Hart, G. L. W.; Zunger, A. (2000). "Electronic Structure of BAs and Boride III-V Alloys". Physical Review B. 62 (20): 13522–13537. arXiv:cond-mat/0009063Freely accessible. Bibcode:2000PhRvB..6213522H. doi:10.1103/PhysRevB.62.13522. 
  8. ^ a b Geisz, J. F; Friedman, D. J; Olson, J. M; Kurtz, Sarah R; Reedy, R. C; Swartzlander, A. B; Keyes, B. M; Norman, A. G (2000). "BGaInAs alloys lattice matched to GaAs". Applied Physics Letters. 76 (11): 1443. Bibcode:2000ApPhL..76.1443G. doi:10.1063/1.126058. 
  9. ^ Chu, T. L; Hyslop, A. E (1974). "Preparation and Properties of Boron Arsenide Films". Journal of the Electrochemical Society. 121 (3): 412. doi:10.1149/1.2401826. 
  10. ^ Kang, Joon Sang; Li, Man; Wu, Huan; Nguyen, Huuduy; Hu, Yongjie (2018). "Experimental observation of high thermal conductivity in boron arsenide". Science: eaat5522. doi:10.1126/science.aat5522. 
  11. ^ Carrard, M; Emin, D; Zuppiroli, L (1995). "Defect clustering and self-healing of electron-irradiated boron-rich solids". Physical Review B. 51 (17): 11270. Bibcode:1995PhRvB..5111270C. doi:10.1103/PhysRevB.51.11270. 
  12. ^ Chen, H.; Wang, G.; Dudley, M.; Xu, Z.; Edgar, J. H.; Batten, T.; Kuball, M.; Zhang, L.; Zhu, Y. (2008). "Single-Crystalline B12As2 on m-plane (1100) 15R-SiC". Applied Physics Letters. 92 (23): 231917. Bibcode:2008ApPhL..92w1917C. doi:10.1063/1.2945635. 
  13. ^ Boone, J. L. and Vandoren, T. P. (1980) Boron arsenide thin film solar cell development, Final Report, Eagle-Picher Industries, Inc., Miami, OK. abstract.
  14. ^ An unlikely competitor for diamond as the best thermal conductor, Phys.org news (July 8, 2013)
  15. ^ Lv, Bing; Lan, Yucheng; Wang, Xiqu; Zhang, Qian; Hu, Yongjie; Jacobson, Allan J; Broido, David; Chen, Gang; Ren, Zhifeng; Chu, Ching-Wu (2015). "Experimental study of the proposed super-thermal-conductor: BAs". Applied Physics Letters. 106 (7): 074105. Bibcode:2015ApPhL.106g4105L. doi:10.1063/1.4913441. 
  16. ^ Feng, Tianli; Lindsay, Lucas; Ruan, Xiulin (2017). "Four-phonon scattering significantly reduces intrinsic thermal conductivity of solids". Physical Review B. 96 (16): 161201. Bibcode:2017PhRvB..96p1201F. doi:10.1103/PhysRevB.96.161201. 
  17. ^ Kang, Joon Sang; Li, Man; Wu, Huan; Nguyen, Huuduy; Hu, Yongjie (2018). "Experimental observation of high thermal conductivity in boron arsenide". Science: eaat5522. doi:10.1126/science.aat5522. 
  18. ^ "High thermal conductivity in cubic boron arsenide crystals". Science. doi:10.1126/science.aat8982 (inactive 2018-07-21). 
  19. ^ Tian, Fei; Song, Bai; Chen, Xi; Ravichandran, Navaneetha K; Lv, Yinchuan; Chen, Ke; Sullivan, Sean; Kim, Jaehyun; Zhou, Yuanyuan; Liu, Te-Huan; Goni, Miguel; Ding, Zhiwei; Sun, Jingying; Gamage, Geethal Amila Gamage Udalamatta; Sun, Haoran; Ziyaee, Hamidreza; Huyan, Shuyuan; Deng, Liangzi; Zhou, Jianshi; Schmidt, Aaron J; Chen, Shuo; Chu, Ching-Wu; Huang, Pinshane Y; Broido, David; Shi, Li; Chen, Gang; Ren, Zhifeng (2018). "Unusual high thermal conductivity in boron arsenide bulk crystals". Science: eaat7932. doi:10.1126/science.aat7932. 

External links[edit]