Jump to content

Boron sulfide

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Leiem (talk | contribs) at 10:50, 13 January 2014. The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Boron sulfide
Names
IUPAC name
Boron sulfide
Other names
Boron trisulfide
Identifiers
ECHA InfoCard 100.031.355 Edit this at Wikidata
Properties
B2S3
Molar mass 117.80 g/mol
Appearance colorless crystals
Density 1.55 g/cm3, solid
Melting point 563 °C
Boiling point decomposes at high T
decomposes
Structure
monoclinic, mP40, SpaceGroup = P21/c, No. 14
B: planar, sp2
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
source of H2S
Related compounds
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)

Boron sulfide is the chemical compound with the formula B2S3. This polymeric material that has been of interest as a component of “high-tech” glasses and as a reagent for preparing organosulfur compounds. Like the sulfides of silicon and phosphorus, B2S3 reacts with water, including atmospheric moisture to release H2S. Thus, samples must be handled under anhydrous conditions.

Like the boron oxides, B2S3 readily forms glasses when blended with other sulfides such as P4S10. Such glasses absorb lower frequencies of Infra-red energy relative to conventional borosilicate glasses.

B2S3 converts ketones into the corresponding thiones. For example, the conversion of benzophenone to its thione proceeds as follows:

B
2
S
3
+ 3 (C
6
H
5
)
2
C=O
B
2
O
3
+ 3 (C
6
H
5
)
2
C=S

In practice, B2S3 would be used in excess.[1]

Synthesis

Besides other methods the Diboron Trisulfide can be obtained by the reaction of iron or manganese boride with hydrogen sulfide at temperatures of 300°C.[2]

2 FeB + 4 H2S → B2S3 + FeS + 4 H2

The first synthesis was done by Jöns Jakob Berzelius in 1824 by direct reaction of amorphous boron with sulfur vapor.[3]

2 B + 3 S → B2S3

Another synthesis was favoured by Friedrich Wöhler and Henri Etienne Sainte-Claire Deville first published in 1858, starting from boron and hydrogen sulfide.[4][5]

2 B + 3 H2S → B2S3 + 3 H2

References

  1. ^ Sato, R. (2004). "Boron Trisulfide". In L. Paquette (ed.). Encyclopedia of Reagents for Organic Synthesis. New York: J. Wiley & Sons. doi:10.1002/047084289X.rb255.
  2. ^ Hoffmann, J. (1908). "Synthese von Borsulfid aus Ferro- und Manganbor". Zeitschrift für Anorganische Chemie. 59 (1): 127–135. doi:10.1002/zaac.19080590116.
  3. ^ Berzelius, J. (1824). "Undersökning af flusspatssyran och dess märkvärdigaste föreningar". Kongliga Vetenskaps-Academiens Handlingar [Proceedings of the Royal Science Academy]. 12: 46–98. {{cite journal}}: Unknown parameter |trans_title= ignored (|trans-title= suggested) (help)
    Reprinted in German as:
    Berzelius, J. J. (1824). "Untersuchungen über die Flußspathsäure und deren merkwürdigsten Verbindungen". Annalen der Physik und Chemie. 78: 113–150. see especially pages 145–147.
  4. ^ Wöhler, F.; Deville, H. E. S.-C. (1858). "Neue Beobachtungen über das Bor und einige seiner Verbindungen". Liebigs Annalen der Chemie und Pharmacie. 105 (1): 67–73. doi:10.1002/jlac.18581050109. {{cite journal}}: Italic or bold markup not allowed in: |journal= (help); Unknown parameter |trans_title= ignored (|trans-title= suggested) (help)
  5. ^ Wöhler, F.; Deville, H. E. S.-C. (1858). "Du Bore". Annales de Chimie et de Physique. 52: 62–93.