Brachistochrone curve

From Wikipedia, the free encyclopedia
Jump to: navigation, search
The solution to the brachistochrone problem is not a straight line or some combination thereof but a cycloid.

In mathematics and physics, a brachistochrone curve (from Ancient Greek βράχιστος χρόνος (brakhistos khrónos), meaning "shortest time"),[1] or curve of fastest descent, is the one lying on plane between a point A and a lower point B, where B is not directly below A, on which a bead slides frictionlessly under the influence of a uniform gravitational field to a given end point in the shortest time. Incidentally, for a given starting point, the brachistochrone curve is the same as the tautochrone curve. More specifically, the solution to the brachistochrone and tautochrone problem are one and the same, the cycloid.[2]

The problem can be solved with the tools from the calculus of variations and optimal control.[3]

The curve is independent of both the mass of the test body and the (local) strength of gravity. Only a parameter is chosen so that the curve fits the starting point A and the ending point B.[4] If the body is given an initial velocity at A, or if friction is taken into account, then the curve that minimizes time will differ from the one described above.

Johann Bernoulli's solution[edit]

According to Fermat’s principle, the actual path between two points taken by a beam of light is one that takes the least time. In 1697 Johann Bernoulli used this principle to derive the brachistochrone curve by considering the trajectory of a beam of light in a medium where the speed of light increases following a constant vertical acceleration (that of gravity g).[5]

By the conservation of energy, the instantaneous speed of a body v at a height y in a uniform gravitational field is given by:

,

Observe that the speed of motion of the body along an arbitrary curve does not depend on the horizontal displacement.

Johann Bernoulli noted that the law of refraction gives a constant of the motion for a beam of light in a medium of variable density:

,

where vm is the constant and represents the angle of the trajectory with respect to the vertical.

The equations above allow us to draw two conclusions:

  1. At the onset, the angle must be zero when the particle speed is zero. Hence, the brachistochrone curve is tangent to the vertical at the origin.
  2. The speed reaches a maximum value when the trajectory becomes horizontal and the angle θ = 90°.

Simplifyingly assuming that the particle (or the beam) with coordinates (x,y) departs from the point (0,0) and reaches maximum speed after a falling a vertical distance D:

.

Rearranging terms in the law of refraction and squaring gives:

which can be solved for dx in terms of dy:

.

Substituting from the expressions for v and vm above gives:

which is the differential equation of an inverted cycloid generated by a circle of diameter D.

Jakob Bernoulli's solution[edit]

Johann's brother Jakob showed how 2nd differentials can be used to obtain the condition for least time. A modernized version of the proof is as follows. If we make a negligible deviation from the path of least time, then, for the differential triangle formed by the displacement along the path and the horizontal and vertical displacements,

.

On differentiation with dy fixed we get,

.

And finally rearranging terms gives,

where the last part is the displacement for given change in time for 2nd differentials. Now consider the changes along the two neighboring paths in the figure below for which the horizontal separation between paths along the central line is d2x (the same for both the upper and lower differential triangles). Along the old and new paths, the parts that differ are,

Path function 2.PNG

For the path of least times these times are equal so for their difference we get,

And the condition for least time is,

History[edit]

Johann Bernoulli posed the problem of the brachistochrone to the readers of Acta Eruditorum in June, 1696.[6][7] He published his solution in the journal in May of the following year, and noted that the solution is the same curve as Huygens's tautochrone curve. After deriving the differential equation for the curve by the method given above, he went on to show that it does yield a cycloid.[8][9] However, his proof is marred by his use of a single constant instead of the three constants, vm, 2g and D, above.

Bernoulli allowed six months for the solutions but none were received during this period. At the request of Leibniz, the time was publicly extended for a year and a half.[10] On 29 January 1697 the challenge was received by Isaac Newton, who found it in his mail, in a letter from Johann Bernoulli,[11] when he arrived home from the Royal Mint at 4 p.m., and stayed up all night to solve it and mailed the solution anonymously by the next post. Upon reading the solution, Bernoulli immediately recognized its author, exclaiming that he "recognizes a lion from his claw marks." This story gives some idea of Newton's power, since Johann Bernoulli took two weeks to solve it.[4][12]

At the end, five mathematicians responded with solutions: Newton, Jakob Bernoulli (Johann's brother), Gottfried Leibniz, Ehrenfried Walther von Tschirnhaus and Guillaume de l'Hôpital. Four of the solutions (excluding l'Hôpital's) were published in the same edition of the journal as Johann Bernoulli's. In his paper Jakob Bernoulli gave a proof of the condition for least time similar to that above before showing that its solution is a cycloid.[8] According to Newtonian scholar Tom Whiteside,

In an attempt to outdo his brother, Jakob Bernoulli created a harder version of the brachistochrone problem. In solving it, he developed new methods that were refined by Leonhard Euler into what the latter called (in 1766) the calculus of variations. Joseph-Louis Lagrange did further work that resulted in modern infinitesimal calculus.

Earlier, in 1638, Galileo had tried to solve a similar problem for the path of the fastest descent from a point to a wall in his Two New Sciences. He draws the conclusion (Third Day, Theorem 22, Prop. 36) that the arc of a circle is faster than any number of its chords,[13]

"From the preceding it is possible to infer that the quickest path of all [lationem omnium velocissimam], from one point to another, is not the shortest path, namely, a straight line, but the arc of a circle.
...
Consequently the nearer the inscribed polygon approaches a circle the shorter is the time required for descent from A to C. What has been proven for the quadrant holds true also for smaller arcs; the reasoning is the same."

We are warned earlier in the Two New Sciences (just after Theorem 6) of possible fallacies and the need for a "higher science." In this dialogue Galileo reviews his own work. The actual solution to Galileo's problem is half a cycloid. Galileo studied the cycloid and gave it its name, but the connection between it and his problem had to wait for advances in mathematics.

See also[edit]

References[edit]

  1. ^ Wikisource-logo.svg Chisholm, Hugh, ed. (1911). "Brachistochrone". Encyclopædia Britannica (11th ed.). Cambridge University Press. 
  2. ^ Stewart, James. "Section 10.1 - Curves Defined by Parametric Equations." Calculus: Early Transcendentals. 7th ed. Belmont, CA: Thomson Brooks/Cole, 2012. 640. Print.
  3. ^ Ross, I. M. The Brachistochrone Paridgm, in A Primer on Pontryagin's Principle in Optimal Control, Collegiate Publishers, 2009. ISBN 978-0-9843571-0-9.
  4. ^ a b Hand, Louis N., and Janet D. Finch. "Chapter 2: Variational Calculus and Its Application to Mechanics." Analytical Mechanics. Cambridge: Cambridge UP, 1998. 45, 70. Print.
  5. ^ Babb, Jeff; Currie, James (July 2008), "The Brachistochrone Problem: Mathematics for a Broad Audience via a Large Context Problem" (PDF), TMME, 5 (2&3): 169–184 
  6. ^ Johann Bernoulli (June 1696) "Problema novum ad cujus solutionem Mathematici invitantur." (A new problem to whose solution mathematicians are invited.), Acta Eruditorum, 18 : 269. From p. 269: "Datis in plano verticali duobus punctis A & B (vid Fig. 5) assignare Mobili M, viam AMB, per quam gravitate sua descendens & moveri incipiens a puncto A, brevissimo tempore perveniat ad alterum punctum B." (Given in a vertical plane two points A and B (see Figure 5), assign to the moving [body] M, the path AMB, by means of which — descending by its own weight and beginning to be moved [by gravity] from point A — it would arrive at the other point B in the shortest time.)
  7. ^ Solutions to Johann Bernoulli's problem of 1696:
  8. ^ a b Struik, J. D. (1969), A Source Book in Mathematics, 1200-1800, Harvard University Press, ISBN 0-691-02397-2 
  9. ^ Herman Erlichson (1999), "Johann Bernoulli's brachistochrone solution using Fermat's principle of least time", Eur. J. Phys., 20: 299–304, doi:10.1088/0143-0807/20/5/301 
  10. ^ Sagan, Carl (2011). Cosmos. Random House Publishing Group. p. 94. ISBN 9780307800985. Retrieved 2 June 2016. 
  11. ^ Katz, Victor J. (1998), A History of Mathematics / An Introduction (2nd ed.), Addison Wesley Longman, p. 547, ISBN 978-0-321-01618-8 
  12. ^ D.T.Whiteside, Newton the mathematician, in Bechler, Contemporary Newtonian Research, p. 122.
  13. ^ Galileo Galilei (1638), Discourses regarding two new sciences, p. 239  This conclusion had appeared six years earlier in Galileo's Dialogue Concerning the Two Chief World Systems (Day 4).

External links[edit]