Brane cosmology

From Wikipedia, the free encyclopedia
Jump to: navigation, search

Brane cosmology refers to several theories in particle physics and cosmology related to string theory, superstring theory and M-theory.

Brane and bulk[edit]

Main article: Brane

The central idea is that the visible, three-dimensional universe is restricted to a brane inside a higher-dimensional space, called the "bulk" (also known as "hyperspace"). If the additional dimensions are compact, then the observed universe contains the extra dimensions, and then no reference to the bulk is appropriate. In the bulk model, at least some of the extra dimensions are extensive (possibly infinite), and other branes may be moving through this bulk. Interactions with the bulk, and possibly with other branes, can influence our brane and thus introduce effects not seen in more standard cosmological models.

Why gravity is weak and the cosmological constant is small[edit]

Some versions of brane cosmology, based on the large extra dimension idea, can explain the weakness of gravity relative to the other fundamental forces of nature, thus solving the so-called hierarchy problem. In the brane picture, the other three forces (electromagnetism and the weak and strong nuclear forces) are localized on the brane, but gravity has no such constraint and propagates on the full spacetime, called bulk. Much of the gravitational attractive power "leaks" into the bulk. As a consequence, the force of gravity should appear significantly stronger on small (subatomic or at least sub-millimetre) scales, where less gravitational force has "leaked". Various experiments are currently under way to test this.[1] Extensions of the large extra dimension idea with supersymmetry in the bulk appears to be promising in addressing the so-called cosmological constant problem.[2][3][4]

Models of brane cosmology[edit]

One of the earliest documented attempts to apply brane cosmology as part of a conceptual theory is dated to 1983.[5]

The authors discussed the possibility that the Universe has dimensions, but ordinary particles are confined in a potential well which is narrow along spatial directions and flat along three others, and proposed a particular five-dimensional model.

In 1998/99 Merab Gogberashvili published on arXiv a number of articles where he showed that if the Universe is considered as a thin shell (a mathematical synonym for "brane") expanding in 5-dimensional space then there is a possibility to obtain one scale for particle theory corresponding to the 5-dimensional cosmological constant and Universe thickness, and thus to solve the hierarchy problem.[6][7][8] It was also shown that the four-dimensionality of the Universe is the result of the stability requirement found in mathematics since the extra component of the Einstein field equations giving the confined solution for matter fields coincides with one of the conditions of stability.

In 1999 there were proposed the closely related Randall–Sundrum (RS1 and RS2; see 5 dimensional warped geometry theory for a nontechnical explanation of RS1) scenarios. These particular models of brane cosmology have attracted a considerable amount of attention.

Later, the pre-big bang, ekpyrotic and cyclic proposals appeared. The ekpyrotic theory hypothesizes that the origin of the observable universe occurred when two parallel branes collided.[9]

Empirical tests[edit]

As of now, no experimental or observational evidence of large extra dimensions, as required by the Randall–Sundrum models, has been reported. An analysis of results from the Large Hadron Collider in December 2010 severely constrains the black holes produced in theories with large extra dimensions.[10]

See also[edit]


  1. ^ Session D9 - Experimental Tests of Short Range Gravitation.
  2. ^ Y. Aghababaie; C.P. Burgess; S.L. Parameswaran; F. Quevedo (March 2004). "Towards a naturally small cosmological constant from branes in 6-D supergravity". Nucl. Phys. B. 680 (1–3): 389–414. arXiv:hep-th/0304256free to read. Bibcode:2004NuPhB.680..389A. doi:10.1016/j.nuclphysb.2003.12.015. 
  3. ^ C.P. Burgess; Leo van Nierop (March 2013). "Technically Natural Cosmological Constant From Supersymmetric 6D Brane Backreaction". Phys. Dark Univ. 2 (1): 1–16. arXiv:1108.0345free to read. Bibcode:2013PDU.....2....1B. doi:10.1016/j.dark.2012.10.001. 
  4. ^ C. P. Burgess; L. van Nierop; S. Parameswaran; A. Salvio; M. Williams (February 2013). "Accidental SUSY: Enhanced Bulk Supersymmetry from Brane Back-reaction". JHEP. 2013: 120. arXiv:1210.5405free to read. Bibcode:2013JHEP...02..120B. doi:10.1007/JHEP02(2013)120. 
  5. ^ V. A. Rubakov and M. E. Shaposhnikov,Do we live inside a domain wall?, Physics Letters B 125 (1983) 136–138.
  6. ^ M. Gogberashvili, Hierarchy problem in the shell universe model, Arxiv:hep-ph/9812296.
  7. ^ M. Gogberashvili, Our world as an expanding shell, Arxiv:hep-ph/9812365.
  8. ^ M. Gogberashvili, Four dimensionality in noncompact Kaluza–Klein model, Arxiv:hep-ph/9904383.
  9. ^ Musser, George; Minkel, JR (2002-02-11). "A Recycled Universe: Crashing branes and cosmic acceleration may power an infinite cycle in which our universe is but a phase". Scientific American Inc. Retrieved 2008-05-03. 
  10. ^ CMS Collaboration, "Search for Microscopic Black Hole Signatures at the Large Hadron Collider",

External links[edit]