Bridged and paralleled amplifiers

From Wikipedia, the free encyclopedia
  (Redirected from Bridge tied load)
Jump to: navigation, search

Multiple electronic amplifiers can be connected such that they drive a single floating load (bridge) or a single common load (parallel), to increase the amount of power available in different situations. This is commonly encountered in audio applications.


Bridged or paralleled modes of working, normally involving audio power amplifiers, are methods of combining the output of two identical amplifiers to provide, what is in effect, a mono amplifier. Combining more than two amplifiers can be effected using the basic principles described, including the possibility of bridge and parallel modes in combination.

Two identical amplifiers are most often encountered in a common case, with a common power supply, and would normally be regarded as a stereo amplifier. Any conventional stereo amplifier can be operated in bridge or parallel mode provided that the common loudspeaker terminals (normally black) are connected and common to the ground rail within the amplifier.

Some two channel amplifiers, or stereo amplifiers, have the built in facility to operate in bridge mode by operating a switch and observing the input and output connections detailed on the back panel or in the manual. This option is most often found in high power PA equipment or amplifiers designed for car audio applications. Operation in parallel mode requires no special facility and is implemented merely by the appropriate external connection.

Stereo amplifiers usually have a common control for gain and frequently bass/treble and when switched to bridge mode will automatically track each channel identically. Where two channel amplifiers have separate controls, and are switchable to bridge mode, only the controls on one channel will be operational.

Where the user implements their own connections for either bridge or parallel mode, and the amplifiers have individual controls, care should be taken that both sets of controls are set identically.

Bridged amplifier[edit]

A bridge-tied load (BTL), also known as bridged transformerless and bridged mono, is an output configuration for audio amplifiers, a form of impedance bridging used mainly in professional audio & car applications.[1] The two channels of a stereo amplifier are fed the same monaural audio signal, with one channel's electrical polarity reversed. A loudspeaker is connected between the two amplifier outputs, bridging the output terminals. This doubles the available voltage swing at the load compared with the same amplifier used without bridging. The configuration is most often used for subwoofers.[2]

Typical circuit[edit]

Representative schematic of a bridged amplifier configuration.

Example. Two amplifiers, each rated 100 watts maximum into 4 ohms, in bridge mode they will appear as a mono amp rated 200 watts into 8 ohms. This is the most commonly misunderstood mode of operation and it requires additional circuitry to implement if the pair of amplifiers does not have the facility built in. The image shows two identical amplifiers A1 and A2 connected in bridge mode. The signals presented to each amplifier of the pair are caused to be in anti-phase. In other words, as the signal in one amplifier is swinging positively, the signal in the other is swinging negatively. If, for example the maximum output voltage swing of each amplifier is between a peak of + and – 10 volts, when the output of one amplifier is at + 10 volts the output of the other will be at –10 volts, which means that the load (a loudspeaker) now sees a 20 volt peak difference between the “hot” (normally red ) output terminals. Driving the load between two signals of opposite electrical polarity makes each amplifier see only half the load's electrical impedance.[3]

The provision of the anti-phase audio input signal can be provided in several ways:

  1. by the built in facility in an amplifier pair provided with the bridge mode option;
  2. by an internal modification such as that described by Rod Elliot at;
  3. by a simple active phase splitter circuit, external to the amplifier;
  4. by a phase splitting audio input transformer, external to the amplifier.

Options 2, 3 and 4 require appropriate knowledge and skill. The bridge mode option is often used in PA systems and especially in car audio applications to feed bass loudspeakers at high power. Car audio amplifiers commonly have only a 13.8 volt supply and obtaining the voltage levels in the amplifier circuit required for even modest powers is expensive. Bridge mode operation helps provide the power required at lower cost.

Benefits and drawbacks[edit]

Since two amplifiers are being used in opposite polarity, using the same power supply, there is no need for the use of a DC blocking capacitor between the amplifier and the load. This saves cost & space, and there is no power reduction at low frequency due to the capacitor.[4]

Bridging an amplifier increases the power that can be supplied to one loudspeaker, but it does not increase the amplifier's total available power. Because a bridge amplifier operates in mono mode, a second identical amplifier is required for stereo operation. For bridged amplifiers, damping factor is cut in half. Because the amplifier's bridged output is floating, it should never be grounded or it may damage the amplifier.[5]

The × 4 myth[edit]

It is sometimes stated that operating an amplifier pair in bridge mode can give four times the power (of one of the pair). This statement makes reference to the fact that power is proportional to the square of the voltage, implying that if the output voltage is doubled – as it is in bridge mode – then the power available increases by a factor of four. This would be true if the amplifier in bridged mode were used to drive loudspeakers of the same impedance used in stereo mode. However, in this case, the current through the loudspeaker and the amplifier would also double, which could exceed the amplifier ratings and lead to overheating and finally destruction of the amplifier. In fact, the minimum impedance of the loudspeaker in bridged mode should be double the minimum impedance rated for stereo mode. Consequently, operating a pair of existing amplifier channels in bridge mode doubles available power output to the load.[5]

Paralleled amplifier[edit]

Representative schematic of a paralleled amplifier configuration.

A paralleled amplifier configuration uses multiple amplifiers in parallel, i.e., two or more amplifiers operating in-phase into a common load.

In this mode the available output CURRENT is doubled but the output voltage remains the same. The output impedance of the pair is now halved.

The image shows two identical amplifiers A1 and A2 connected in parallel configuration. This configuration is often used when a single amplifier is incapable of being operated into a low impedance load or dissipation per amplifier is to be reduced without increasing the load impedance or reducing power delivered to the load. For example, if two identical amplifiers (each rated for operation into 4 Ω) are paralleled into a 4 Ω load, each amplifier sees an equivalent of 8 Ω since the output current is now shared by both amplifiers — each amplifier supplies half the load current, and the dissipation per amplifier is halved. This configuration (ideally or theoretically) requires each amplifier to be exactly identical to the other(s), or they will appear as loads to each other. Practically, each amplifier must satisfy the following:

  • Each amplifier must have as little output DC offset as possible (ideally zero offset) at no signal, otherwise the amplifier with the higher offset will try to drive current into the one with lesser offset thereby increasing dissipation. Equal offsets are also not acceptable since this will cause unwanted current (and dissipation) in the load. These are taken care of by adding an offset nulling circuit to each amplifier.
  • The gains of the amplifiers must be as closely matched as possible so that the outputs don't try to drive each other when signal is present.

In addition, small resistors (much less than the load impedance, not shown in the schematic) are added in series with each amplifier's output to enable proper current sharing between the amplifiers. These resistances are necessary, without them the amplifiers will in practice fight each other and overheat.

Another method of parallelling amplifiers is to use current drive. With this approach the close matching and resistances are not needed.

Bridge-parallel amplifier[edit]

A bridge-parallel amplifier configuration uses a combination of the bridged and paralleled amplifier configurations. This is more commonly used with IC power amplifiers where it is desired to have a system capable of generating large power into the rated load impedance (i.e., the load impedance used is the one specified for a single amplifier) without exceeding the power dissipation per amplifier. From the preceding sections, it can be seen that a bridged configuration doubles the dissipation in each amplifier while a paralleled configuration with two amplifiers halves the dissipation in each amplifier when operating into the rated load impedance. So when both configurations are combined, assuming two amplifiers per configuration, the resulting dissipation per amplifier now remains unchanged while operating into the rated load impedance, but with nearly four times the power that each amplifier is individually capable of, being delivered to the load.

See also[edit]


  1. ^ Eiche, Jon F. (1990). Guide to Sound Systems for Worship. Recording and Audio Technology. Hal Leonard Corporation. p. 87. ISBN 0-7935-0029-X. 
  2. ^ "Stereo, Parallel, and Bridge Mono". Amp Guide. DirectProAudio. Retrieved September 28, 2011. 
  3. ^ Roberts, Joe (2007). "Audio Power Amplifier Fundamentals". Joe's Tech Notes. Retrieved September 28, 2011. 
  4. ^ Self, Douglas (2009). Audio Power Amplifier Design Handbook (5 ed.). Focal Press. p. 367. ISBN 0-240-52162-5. 
  5. ^ a b Bartlett, Bruce (May 1, 2010). "Amplifier Power Master Class: Not All Ratings Are Similar". ProSoundWeb. Retrieved September 28, 2011. 

Further reading[edit]