Bromide

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
Bromide
Br-.svg
Bromide ion.svg
Names
Systematic IUPAC name
Bromide[1]
Identifiers
  • 24959-67-9 checkY
3D model (JSmol)
3587179
ChEBI
ChEMBL
ChemSpider
14908
KEGG
UNII
  • InChI=1S/BrH/h1H/p-1 checkY
    Key: CPELXLSAUQHCOX-UHFFFAOYSA-M checkY
  • [Br-]
Properties
Br
Molar mass 79.904 g·mol−1
Conjugate acid Hydrogen bromide
Thermochemistry
82 J·mol−1·K−1[2]
−121 kJ·mol−1[2]
Pharmacology
N05CM11 (WHO)
Pharmacokinetics:
12 d
Related compounds
Other anions
Fluoride

Chloride
Iodide

Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)
Infobox references

A bromide ion is the negatively charged form (Br) of the element bromine, a member of the halogens group on the periodic table. Most bromides are colorless. In contrast to chlorides, bromides have relatively few biological or practical roles.[3] Although uncommon, chronic toxicity from bromide can result in bromism, a syndrome with multiple neurological symptoms. Bromide toxicity can also cause a type of skin eruption. See potassium bromide. The bromide ion has an ionic radius of 196 pm.[4]

Natural occurrence[edit]

Bromide is present in typical seawater (35 PSU) with a concentration of around 65 mg/L, which is about 0.2% of all dissolved salts. Seafood and deep sea plants generally have higher levels than land-derived foods. Bromargyrite—natural, crystalline silver bromide—is the most common bromide mineral known but is still very rare. In addition to silver, bromine is also in minerals combined with mercury and copper.[5]

Formation and reactions of bromide[edit]

Dissociation of bromide salts[edit]

Bromide salts of alkali metal, alkaline earth metals, and many other metals dissolve in water (and even some alcohols and a few ethers) to give bromide ions. The classic case is sodium bromide, which fully dissociates in water:

NaBr → Na+ + Br

Hydrogen bromide, which is a diatomic molecule, takes on salt-like properties upon contact with water to give an ionic solution called hydrobromic acid. The process is often described simplistically as involving formation of the hydronium salt of bromide:

HBr + H2O → H3O+ + Br

Hydrolysis of bromine[edit]

Bromine readily reacts with water, i.e. it undergoes hydrolysis:

Br2 + H2O → HOBr + HBr

This forms hypobromous acid (HOBr), and hydrobromic acid (HBr in water). The solution is called "bromine water". The hydrolysis of bromine is more favorable in the presence of base, for example sodium hydroxide:

Br2 + NaOH → NaOBr + NaBr

This reaction is analogous to the production of bleach, where chlorine is dissolved in the presence of sodium hydroxide.[6]

Oxidation of bromide[edit]

One can test for a bromide ion by adding an oxidizer. One method uses dilute HNO3.

Balard and Löwig's method can be used to extract bromine from seawater and certain brines. For samples testing for sufficient bromide concentration, addition of chlorine produces bromine (Br2):[7]

Cl2 + 2 Br → 2 Cl + Br2

Applications[edit]

Bromide's main commercial value based on value and quantity is its use in producing organobromine compounds, which themselves are rather specialized. Organobromine compounds are mainly used as fire retardants, and even these applications are controversial. Many metal bromides are produced commercially, including LiBr, NaBr, NH4Br, CuBr, ZnBr2 and AlBr3. Some applications are for silver-based photography, which is fading in value, and drilling fluid, which calls for generic, dense compounds and thus is of little value.[8]

Medicinal and veterinary uses[edit]

Folk and passé medicine[edit]

Lithium bromide was used as a sedative beginning in the early 1900s. However, it fell into disfavour in the 1940s due to the rising popularity of safer and more efficient sedatives (specifically, barbiturates) and when some heart patients died after using a salt substitute (see lithium chloride).[9] Like lithium carbonate and lithium chloride, it was used as a treatment for bipolar disorder.

Bromide compounds, especially potassium bromide, were frequently used as sedatives in the 19th and early 20th centuries. Their use in over-the-counter sedatives and headache remedies (such as Bromo-Seltzer) in the United States extended to 1975 when bromides were withdrawn as ingredients due to chronic toxicity.[10] This use gave the word "bromide" its colloquial connotation of a comforting cliché.[11]

It has been said that during World War I, British soldiers were given bromide to curb their sexual urges.[12] Lord Dunsany mentions a soldier being given bromide as a sedative for nervous exhaustion and overwork in his play Fame and the Poet (1919).[13]

Bromide salts are used in hot tubs as mild germicidal agents to generate in situ hypobromite

The bromide ion is antiepileptic and as bromide salt, is used in veterinary medicine in the US. The kidneys excrete bromide ions. The half-life of bromide in the human body (12 days) is long compared with many pharmaceuticals, making dosing challenging to adjust (a new dose may require several months to reach equilibrium). Bromide ion concentrations in the cerebrospinal fluid are about 30% of those in blood and are strongly influenced by the body's chloride intake and metabolism.[14]

Since bromide is still used in veterinary medicine in the United States, veterinary diagnostic labs can routinely measure blood bromide levels. However, this is not a conventional test in human medicine in the US since there are no FDA-approved uses for the bromide. Therapeutic bromide levels are measured in European countries like Germany, where bromide is still used therapeutically in human epilepsy.

Biochemistry[edit]

Bromide is rarely mentioned in the biochemical context. Some enzymes use bromide as substrate or as a cofactor.

Substrate[edit]

Bromoperoxidase enzymes use bromide (typically in seawater) to generate electrophilic brominatiing agents. Hundreds of organobromine compounds are generated by this process. Notable exampless are bromoform, thousands of tons of which are produced annually in this way. The historical dye Tyrian purple is produced by similar enzymatic reactions.[15]

Cofactor[edit]

In one specialized report, bromideis an essential cofactor in the peroxidising catalysis of sulfonimine crosslinks in collagen IV. This post-translational modification occurs in all animals and bromine is an essential trace element for humans.[16]

Eosinophils need bromide for fighting multicellular parasites. Hypobromite is produced via eosinophil peroxidase, an enzyme that can use chloride but preferentially uses bromide.[17]

The average concentration of bromide in human blood in Queensland, Australia, is 5.3±1.4 mg/L and varies with age and gender.[18] Much higher levels may indicate exposure to brominated chemicals. It is also found in seafood.

Further reading[edit]

Encyclopedia articles and books[edit]

  • Christe, K., and S. Schneider (2020), Bromine, Encyclopædia Britannica.
  • Emerson, S., and J. Hedges (2011), Chemical Oceanography and the Marine Carbon Cycle, Cambridge University Press, Cambridge.
  • Glasow, R. von, and C. Hughes (2014), Biogeochemical Cycles: Bromine, Encyclopedia of Atmospheric Sciences (Second Edition).
  • Knight, J., and N. Schlager (2002), Real-life chemistry, Gale Group, Detroit, MI.
  • Millero, F. J. (2013), Chemical oceanography, Taylor & Francis, Boca Raton.
  • Newton D. E. (2010), Bromine (Revised), Chemical Elements: From Carbon to Krypton.
  • Riley, J. P., G. Skirrow, and R. Chester (1975), Chemical Oceanography, Academic Press, London
  • Ross, R. (2017), Facts About Bromine, LiveScience.
  • Steele, J. H., S. A. Thorpe, and K. K. Turekian (2001), Encyclopedia of Ocean Sciences, Academic Press, San Diego.
  • Steele, J. H., S. A. Thorpe, and K. K. Turekian (2009), Encyclopedia of Ocean Sciences, Academic Press, Boston.
  • Watkins, T. (2011), Bromine, Environmental Encyclopedia.

Peer-reviewed journal articles for bromine (Br)[edit]

  • Wisniak, J. (2002), The history of bromine from discovery to commodity, NOPR.

Peer-reviewed journal articles for bromide (Br)[edit]

  • Anbar, A. D., Y. L. Yung, and F. P. Chavez (1996), Methyl bromide: Ocean sources, ocean sinks, and climate sensitivity, AGU Journals.
  • Foti, S. C., and Naval Ordnance Lab White Oak Md (1972), Concentration of Bromide Ions in Seawater by Isotopic Exchange with Mercurous Bromide, DTIC.
  • Gribble, G. W. (2000), The natural production of organobromine compounds, Environmental Science and Pollution Research, 7(1), 37–49, doi:10.1065/espr199910.002.
  • Leri A. (2012), The Chemistry of Bromine in Terrestrial and Marine Environments, Science Highlight.
  • Magazinovic, R. S., B. C. Nicholson, D. E. Mulcahy, and D. E. Davey (2004), Bromide levels in natural waters: its relationship to levels of both chloride and total dissolved solids and the implications for water treatment, Chemosphere, 57(4), 329–335, doi:10.1016/j.chemosphere.2004.04.056.
  • Pilinis, C., D. B. King, and E. S. Saltzman (1996), The oceans: A source or a sink of methyl bromide?, Geophysical Research Letters, 23(8), 817–820, doi:10.1029/96gl00424.
  • Stemmler, I., I. Hense, and B. Quack (2015), Marine sources of bromoform in the global open ocean – global patterns and emissions, Biogeosciences, 12(6), 1967–1981, doi:10.5194/bg-12-1967-2015.
  • Suzuki, A., Lim, L., Hiroi, T., & Takeuchi, T. (2006, March 20). Rapid determination of bromide in seawater samples by capillary ion chromatography using monolithic silica columns modified with cetyltrimethylammonium ion.

References[edit]

  1. ^ "Bromide – PubChem Public Chemical Database". The PubChem Project. USA: National Center for Biotechnology Information. Archived from the original on 2012-11-03.
  2. ^ a b Zumdahl, Steven S. (2009). Chemical Principles (6th ed.). Houghton Mifflin. ISBN 978-0-618-94690-7.
  3. ^ Rattley, Matt (2012). "Ambiguous bromine". Nature Chemistry. 4 (6): 512. Bibcode:2012NatCh...4..512R. doi:10.1038/nchem.1361. PMID 22614389.
  4. ^ "Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides". Acta Crystallographica A. 32: 751–767. 1976.
  5. ^ "Mindat.org - Mines, Minerals and More". www.mindat.org. Archived from the original on 2 March 2001. Retrieved 29 April 2018.
  6. ^ Chemistry of the Elements, N. N. Greenwood, A. Earnshaw, Elsevier, 2012, pp 789
  7. ^ Magazinovic, Rodney S; Nicholson, Brenton C; Mulcahy, Dennis E; Davey, David E (2004). "Bromide levels in natural waters: its relationship to levels of both chloride and total dissolved solids and the implications for water treatment". Chemosphere. 57 (4): 329–335. Bibcode:2004Chmsp..57..329M. doi:10.1016/j.chemosphere.2004.04.056. PMID 15312731.
  8. ^ Dagani, Michael J.; Barda, Henry J.; Benya, Theodore J.; Sanders, David C. "Bromine Compounds". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a04_405.
  9. ^ Bipolar disorder. webmd.com
  10. ^ Adams, Samuel Hopkins (1905). The Great American fraud. Press of the American Medical Association..
  11. ^ "the definition of bromide". Dictionary.com. Archived from the original on 24 December 2016. Retrieved 21 December 2016.
  12. ^ Tanaka, Yuki (2002) Japan's Comfort Women: Sexual slavery and prostitution during World War II and the US Occupation, Routledge, p. 175. ISBN 0415194008.
  13. ^ Lord Dunsany (August 1919). "Fame and the Poet". The Atlantic Monthly: 175–183. Archived from the original on 2015-12-22.
  14. ^ Goodman, L. S.; Gilman, A., eds. (1970). "10. Hypnotics and Sedatives". The Biological Basis of Therapeutics (4th ed.). London: Macmillan. p. 121.
  15. ^ Gribble, Gordon W. (1999). "The diversity of naturally occurring organobromine compounds". Chemical Society Reviews. 28: 335–346. doi:10.1039/a900201d.
  16. ^ McCall, A. Scott; Cummings, Christopher F.; Bhave, Gautam; Vanacore, Roberto; Page-McCaw, Andrea; Hudson, Billy G. (2014). "Bromine Is an Essential Trace Element for Assembly of Collagen IV Scaffolds in Tissue Development and Architecture". Cell. 157 (6): 1380–1392. doi:10.1016/j.cell.2014.05.009. PMC 4144415. PMID 24906154.
  17. ^ Mayeno, Arthur N.; Curran, A. Jane; Roberts, Robert L.; Foote, Christopher S. (1989-04-05). "Eosinophils Preferentially Use Bromide to Generate Halogenating Agents". Journal of Biological Chemistry. 264 (10): 5660–5668. doi:10.1016/s0021-9258(18)83599-2. ISSN 0021-9258. PMID 2538427.
  18. ^ Olszowy, HA; Rossiter, J; Hegarty, J; Geoghegan, P (1998). "Background levels of bromide in human blood". Journal of Analytical Toxicology. 22 (3): 225–30. doi:10.1093/jat/22.3.225. PMID 9602940.