Burr distribution

Jump to navigation Jump to search
Parameters Probability density function Cumulative distribution function ${\displaystyle c>0\!}$ ${\displaystyle k>0\!}$ ${\displaystyle x>0\!}$ ${\displaystyle ck{\frac {x^{c-1}}{(1+x^{c})^{k+1}}}\!}$ ${\displaystyle 1-\left(1+x^{c}\right)^{-k}}$ ${\displaystyle \mu _{1}=k\operatorname {\mathrm {B} } (k-1/c,\,1+1/c)}$ where Β() is the beta function ${\displaystyle \left(2^{\frac {1}{k}}-1\right)^{\frac {1}{c}}}$ ${\displaystyle \left({\frac {c-1}{kc+1}}\right)^{\frac {1}{c}}}$ ${\displaystyle -\mu _{1}^{2}+\mu _{2}}$ ${\displaystyle {\frac {2\mu _{1}^{3}-3\mu _{1}\mu _{2}+\mu _{3}}{\left(-\mu _{1}^{2}+\mu _{2}\right)^{3/2}}}}$ ${\displaystyle {\frac {-3\mu _{1}^{4}+6\mu _{1}^{2}\mu _{2}-4\mu _{1}\mu _{3}+\mu _{4}}{\left(-\mu _{1}^{2}+\mu _{2}\right)^{2}}}-3}$ where moments (see) ${\displaystyle \mu _{r}=k\operatorname {\mathrm {B} } \left({\frac {ck-r}{c}},\,{\frac {c+r}{c}}\right)}$

In probability theory, statistics and econometrics, the Burr Type XII distribution or simply the Burr distribution[1] is a continuous probability distribution for a non-negative random variable. It is also known as the Singh–Maddala distribution[2] and is one of a number of different distributions sometimes called the "generalized log-logistic distribution". It is most commonly used to model household income (See: Household income in the U.S. and compare to magenta graph at right).

The Burr (Type XII) distribution has probability density function:[3][4]

{\displaystyle {\begin{aligned}f(x;c,k)&=ck{\frac {x^{c-1}}{(1+x^{c})^{k+1}}}\\[6pt]f(x;c,k,\lambda )&={\frac {ck}{\lambda }}\left({\frac {x}{\lambda }}\right)^{c-1}\left[1+\left({\frac {x}{\lambda }}\right)^{c}\right]^{-k-1}\end{aligned}}}
${\displaystyle F(x;c,k)=1-\left(1+x^{c}\right)^{-k}}$
${\displaystyle F(x;c,k,\lambda )=1-\left[1+\left({\frac {x}{\lambda }}\right)^{c}\right]^{-k}}$

Note when c = 1, the Burr distribution becomes the Pareto Type II (Lomax) distribution. When k = 1, the Burr distribution is a special case of the Champernowne distribution, often referred to as the Fisk distribution.[5][6]

The Burr Type XII distribution is a member of a system of continuous distributions introduced by Irving W. Burr (1942), which comprises 12 distributions.[7]

References

1. ^ Burr, I. W. (1942). "Cumulative frequency functions". Annals of Mathematical Statistics. 13 (2): 215–232. doi:10.1214/aoms/1177731607. JSTOR 2235756.
2. ^ Singh, S.; Maddala, G. (1976). "A Function for the Size Distribution of Incomes". Econometrica. 44 (5): 963–970. JSTOR 1911538.
3. ^ Maddala, G. S. (1996) [1983]. Limited-Dependent and Qualitative Variables in Econometrics. Cambridge University Press. ISBN 0-521-33825-5.
4. ^ Tadikamalla, Pandu R. (1980), "A Look at the Burr and Related Distributions", International Statistical Review, 48 (3): 337–344, doi:10.2307/1402945, JSTOR 1402945
5. ^ C. Kleiber and S. Kotz (2003). Statistical Size Distributions in Economics and Actuarial Sciences. New York: Wiley. See Sections 7.3 "Champernowne Distribution" and 6.4.1 "Fisk Distribution."
6. ^ Champernowne, D. G. (1952). "The graduation of income distributions". Econometrica. 20 (4): 591–614. doi:10.2307/1907644.
7. ^ See Kleiber and Kotz (2003), Table 2.4, p. 51, "The Burr Distributions."