CDC42

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Cell division cycle 42
CDC42.png
PDB rendering based on 1a4r.
Available structures
PDB Ortholog search: PDBe, RCSB
Identifiers
Symbols CDC42 ; CDC42Hs; G25K
External IDs OMIM116952 MGI106211 HomoloGene123986 ChEMBL: 6088 GeneCards: CDC42 Gene
RNA expression pattern
PBB GE CDC42 208728 s at tn.png
PBB GE CDC42 208727 s at tn.png
PBB GE CDC42 210232 at tn.png
More reference expression data
Orthologs
Species Human Mouse
Entrez 998 12540
Ensembl ENSG00000070831 ENSMUSG00000006699
UniProt P60953 P60766
RefSeq (mRNA) NM_001039802 NM_001243769
RefSeq (protein) NP_001034891 NP_001230698
Location (UCSC) Chr 1:
22.05 – 22.09 Mb
Chr 4:
137.32 – 137.36 Mb
PubMed search [1] [2]

Cell division control protein 42 homolog also known as CDC42 is a protein involved in regulation of the cell cycle. In humans, CDC42 is encoded by the CDC42 gene.[1][2]

Function[edit]

Human CDC42 is a small GTPase of the Rho family, which regulates signaling pathways that control diverse cellular functions including cell morphology, migration, endocytosis and cell cycle progression. This protein is highly similar to Saccharomyces cerevisiae Cdc 42, and is able to complement the yeast cdc42-1 mutant. The product of oncogene Dbl was reported to specifically catalyze the dissociation of GDP from this protein. This protein could regulate actin polymerization through its direct binding to Neural Wiskott-Aldrich syndrome protein (N-WASP), which subsequently activates Arp2/3 complex. Alternative splicing of this gene results in multiple transcript variants.[3]

Interactions[edit]

CDC42 has been shown to interact with:

References[edit]

  1. ^ Shinjo K, Koland JG, Hart MJ, Narasimhan V, Johnson DI, Evans T, Cerione RA (Dec 1990). "Molecular cloning of the gene for the human placental GTP-binding protein Gp (G25K): identification of this GTP-binding protein as the human homolog of the yeast cell-division-cycle protein CDC42". Proceedings of the National Academy of Sciences of the United States of America 87 (24): 9853–7. doi:10.1073/pnas.87.24.9853. PMC 55272. PMID 2124704. 
  2. ^ Munemitsu S, Innis MA, Clark R, McCormick F, Ullrich A, Polakis P (Nov 1990). "Molecular cloning and expression of a G25K cDNA, the human homolog of the yeast cell cycle gene CDC42". Molecular and Cellular Biology 10 (11): 5977–82. PMC 361395. PMID 2122236. 
  3. ^ "Entrez Gene: CDC42 cell division cycle 42 (GTP binding protein, 25kDa)". 
  4. ^ a b c Nagata K, Puls A, Futter C, Aspenstrom P, Schaefer E, Nakata T, Hirokawa N, Hall A (Jan 1998). "The MAP kinase kinase kinase MLK2 co-localizes with activated JNK along microtubules and associates with kinesin superfamily motor KIF3". The EMBO Journal 17 (1): 149–58. doi:10.1093/emboj/17.1.149. PMC 1170366. PMID 9427749.  Vancouver style error (help)
  5. ^ Li R, Zhang B, Zheng Y (Dec 1997). "Structural determinants required for the interaction between Rho GTPase and the GTPase-activating domain of p190". The Journal of Biological Chemistry 272 (52): 32830–5. doi:10.1074/jbc.272.52.32830. PMID 9407060. 
  6. ^ a b Low BC, Lim YP, Lim J, Wong ES, Guy GR (Nov 1999). "Tyrosine phosphorylation of the Bcl-2-associated protein BNIP-2 by fibroblast growth factor receptor-1 prevents its binding to Cdc42GAP and Cdc42". The Journal of Biological Chemistry 274 (46): 33123–30. doi:10.1074/jbc.274.46.33123. PMID 10551883. 
  7. ^ a b c d Zhang B, Chernoff J, Zheng Y (Apr 1998). "Interaction of Rac1 with GTPase-activating proteins and putative effectors. A comparison with Cdc42 and RhoA". The Journal of Biological Chemistry 273 (15): 8776–82. doi:10.1074/jbc.273.15.8776. PMID 9535855. 
  8. ^ a b Ewing RM, Chu P, Elisma F, Li H, Taylor P, Climie S, McBroom-Cerajewski L, Robinson MD, O'Connor L, Li M, Taylor R, Dharsee M, Ho Y, Heilbut A, Moore L, Zhang S, Ornatsky O, Bukhman YV, Ethier M, Sheng Y, Vasilescu J, Abu-Farha M, Lambert JP, Duewel HS, Stewart II, Kuehl B, Hogue K, Colwill K, Gladwish K, Muskat B, Kinach R, Adams SL, Moran MF, Morin GB, Topaloglou T, Figeys D (2007). "Large-scale mapping of human protein-protein interactions by mass spectrometry". Molecular Systems Biology 3 (1): 89. doi:10.1038/msb4100134. PMC 1847948. PMID 17353931. 
  9. ^ Gorvel JP, Chang TC, Boretto J, Azuma T, Chavrier P (Jan 1998). "Differential properties of D4/LyGDI versus RhoGDI: phosphorylation and rho GTPase selectivity". FEBS Letters 422 (2): 269–73. doi:10.1016/S0014-5793(98)00020-9. PMID 9490022. 
  10. ^ Soltau M, Richter D, Kreienkamp HJ (Dec 2002). "The insulin receptor substrate IRSp53 links postsynaptic shank1 to the small G-protein cdc42". Molecular and Cellular Neurosciences 21 (4): 575–83. doi:10.1006/mcne.2002.1201. PMID 12504591. 
  11. ^ Krugmann S, Jordens I, Gevaert K, Driessens M, Vandekerckhove J, Hall A (Oct 2001). "Cdc42 induces filopodia by promoting the formation of an IRSp53:Mena complex". Current Biology 11 (21): 1645–55. doi:10.1016/S0960-9822(01)00506-1. PMID 11696321. 
  12. ^ Miki H, Yamaguchi H, Suetsugu S, Takenawa T (Dec 2000). "IRSp53 is an essential intermediate between Rac and WAVE in the regulation of membrane ruffling". Nature 408 (6813): 732–5. doi:10.1038/35047107. PMID 11130076. 
  13. ^ Low BC, Seow KT, Guy GR (May 2000). "Evidence for a novel Cdc42GAP domain at the carboxyl terminus of BNIP-2". The Journal of Biological Chemistry 275 (19): 14415–22. doi:10.1074/jbc.275.19.14415. PMID 10799524. 
  14. ^ Low BC, Seow KT, Guy GR (Dec 2000). "The BNIP-2 and Cdc42GAP homology domain of BNIP-2 mediates its homophilic association and heterophilic interaction with Cdc42GAP". The Journal of Biological Chemistry 275 (48): 37742–51. doi:10.1074/jbc.M004897200. PMID 10954711. 
  15. ^ Qin W, Hu J, Guo M, Xu J, Li J, Yao G, Zhou X, Jiang H, Zhang P, Shen L, Wan D, Gu J (Aug 2003). "BNIPL-2, a novel homologue of BNIP-2, interacts with Bcl-2 and Cdc42GAP in apoptosis". Biochemical and Biophysical Research Communications 308 (2): 379–85. doi:10.1016/S0006-291X(03)01387-1. PMID 12901880. 
  16. ^ a b Joberty G, Perlungher RR, Macara IG (Oct 1999). "The Borgs, a new family of Cdc42 and TC10 GTPase-interacting proteins". Molecular and Cellular Biology 19 (10): 6585–97. PMC 84628. PMID 10490598. 
  17. ^ Hirsch DS, Pirone DM, Burbelo PD (Jan 2001). "A new family of Cdc42 effector proteins, CEPs, function in fibroblast and epithelial cell shape changes". The Journal of Biological Chemistry 276 (2): 875–83. doi:10.1074/jbc.M007039200. PMID 11035016. 
  18. ^ Alberts AS, Bouquin N, Johnston LH, Treisman R (Apr 1998). "Analysis of RhoA-binding proteins reveals an interaction domain conserved in heterotrimeric G protein beta subunits and the yeast response regulator protein Skn7". The Journal of Biological Chemistry 273 (15): 8616–22. doi:10.1074/jbc.273.15.8616. PMID 9535835. 
  19. ^ Makkinje A, Quinn DA, Chen A, Cadilla CL, Force T, Bonventre JV, Kyriakis JM (Jun 2000). "Gene 33/Mig-6, a transcriptionally inducible adapter protein that binds GTP-Cdc42 and activates SAPK/JNK. A potential marker transcript for chronic pathologic conditions, such as diabetic nephropathy. Possible role in the response to persistent stress". The Journal of Biological Chemistry 275 (23): 17838–47. doi:10.1074/jbc.M909735199. PMID 10749885. 
  20. ^ Gibson RM, Wilson-Delfosse AL (Oct 2001). "RhoGDI-binding-defective mutant of Cdc42Hs targets to membranes and activates filopodia formation but does not cycle with the cytosol of mammalian cells". The Biochemical Journal 359 (Pt 2): 285–94. doi:10.1042/0264-6021:3590285. PMC 1222146. PMID 11583574. 
  21. ^ Kuroda S, Fukata M, Kobayashi K, Nakafuku M, Nomura N, Iwamatsu A, Kaibuchi K (Sep 1996). "Identification of IQGAP as a putative target for the small GTPases, Cdc42 and Rac1". The Journal of Biological Chemistry 271 (38): 23363–7. doi:10.1074/jbc.271.38.23363. PMID 8798539. 
  22. ^ Fukata M, Watanabe T, Noritake J, Nakagawa M, Yamaga M, Kuroda S, Matsuura Y, Iwamatsu A, Perez F, Kaibuchi K (Jun 2002). "Rac1 and Cdc42 capture microtubules through IQGAP1 and CLIP-170". Cell 109 (7): 873–85. doi:10.1016/S0092-8674(02)00800-0. PMID 12110184. 
  23. ^ Hart MJ, Callow MG, Souza B, Polakis P (Jun 1996). "IQGAP1, a calmodulin-binding protein with a rasGAP-related domain, is a potential effector for cdc42Hs". The EMBO Journal 15 (12): 2997–3005. PMC 450241. PMID 8670801. 
  24. ^ Joyal JL, Annan RS, Ho YD, Huddleston ME, Carr SA, Hart MJ, Sacks DB (Jun 1997). "Calmodulin modulates the interaction between IQGAP1 and Cdc42. Identification of IQGAP1 by nanoelectrospray tandem mass spectrometry". The Journal of Biological Chemistry 272 (24): 15419–25. doi:10.1074/jbc.272.24.15419. PMID 9182573. 
  25. ^ Brill S, Li S, Lyman CW, Church DM, Wasmuth JJ, Weissbach L, Bernards A, Snijders AJ (Sep 1996). "The Ras GTPase-activating-protein-related human protein IQGAP2 harbors a potential actin binding domain and interacts with calmodulin and Rho family GTPases". Molecular and Cellular Biology 16 (9): 4869–78. PMC 231489. PMID 8756646. 
  26. ^ Hussain NK, Jenna S, Glogauer M, Quinn CC, Wasiak S, Guipponi M, Antonarakis SE, Kay BK, Stossel TP, Lamarche-Vane N, McPherson PS (Oct 2001). "Endocytic protein intersectin-l regulates actin assembly via Cdc42 and N-WASP". Nature Cell Biology 3 (10): 927–32. doi:10.1038/ncb1001-927. PMID 11584276. 
  27. ^ Snyder JT, Worthylake DK, Rossman KL, Betts L, Pruitt WM, Siderovski DP, Der CJ, Sondek J (Jun 2002). "Structural basis for the selective activation of Rho GTPases by Dbl exchange factors". Nature Structural Biology 9 (6): 468–75. doi:10.1038/nsb796. PMID 12006984. 
  28. ^ Böck BC, Vacratsis PO, Qamirani E, Gallo KA (May 2000). "Cdc42-induced activation of the mixed-lineage kinase SPRK in vivo. Requirement of the Cdc42/Rac interactive binding motif and changes in phosphorylation". The Journal of Biological Chemistry 275 (19): 14231–41. doi:10.1074/jbc.275.19.14231. PMID 10799501. 
  29. ^ Seoh ML, Ng CH, Yong J, Lim L, Leung T (Mar 2003). "ArhGAP15, a novel human RacGAP protein with GTPase binding property". FEBS Letters 539 (1-3): 131–7. doi:10.1016/S0014-5793(03)00213-8. PMID 12650940. 
  30. ^ Stevens WK, Vranken W, Goudreau N, Xiang H, Xu P, Ni F (May 1999). "Conformation of a Cdc42/Rac interactive binding peptide in complex with Cdc42 and analysis of the binding interface". Biochemistry 38 (19): 5968–75. doi:10.1021/bi990426u. PMID 10320322. 
  31. ^ a b Abo A, Qu J, Cammarano MS, Dan C, Fritsch A, Baud V, Belisle B, Minden A (Nov 1998). "PAK4, a novel effector for Cdc42Hs, is implicated in the reorganization of the actin cytoskeleton and in the formation of filopodia". The EMBO Journal 17 (22): 6527–40. doi:10.1093/emboj/17.22.6527. PMC 1171000. PMID 9822598. 
  32. ^ a b Dan C, Nath N, Liberto M, Minden A (Jan 2002). "PAK5, a new brain-specific kinase, promotes neurite outgrowth in N1E-115 cells". Molecular and Cellular Biology 22 (2): 567–77. doi:10.1128/MCB.22.2.567-577.2002. PMC 139731. PMID 11756552. 
  33. ^ Pandey A, Dan I, Kristiansen TZ, Watanabe NM, Voldby J, Kajikawa E, Khosravi-Far R, Blagoev B, Mann M (May 2002). "Cloning and characterization of PAK5, a novel member of mammalian p21-activated kinase-II subfamily that is predominantly expressed in brain". Oncogene 21 (24): 3939–48. doi:10.1038/sj.onc.1205478. PMID 12032833. 
  34. ^ a b Joberty G, Petersen C, Gao L, Macara IG (Aug 2000). "The cell-polarity protein Par6 links Par3 and atypical protein kinase C to Cdc42". Nature Cell Biology 2 (8): 531–9. doi:10.1038/35019573. PMID 10934474. 
  35. ^ a b Noda Y, Takeya R, Ohno S, Naito S, Ito T, Sumimoto H (Feb 2001). "Human homologues of the Caenorhabditis elegans cell polarity protein PAR6 as an adaptor that links the small GTPases Rac and Cdc42 to atypical protein kinase C". Genes to Cells 6 (2): 107–19. doi:10.1046/j.1365-2443.2001.00404.x. PMID 11260256. 
  36. ^ Qiu RG, Abo A, Steven Martin G (Jun 2000). "A human homolog of the C. elegans polarity determinant Par-6 links Rac and Cdc42 to PKCzeta signaling and cell transformation". Current Biology 10 (12): 697–707. doi:10.1016/S0960-9822(00)00535-2. PMID 10873802. 
  37. ^ Neudauer CL, Joberty G, Macara IG (Jan 2001). "PIST: a novel PDZ/coiled-coil domain binding partner for the rho-family GTPase TC10". Biochemical and Biophysical Research Communications 280 (2): 541–7. doi:10.1006/bbrc.2000.4160. PMID 11162552. 
  38. ^ Walker SJ, Wu WJ, Cerione RA, Brown HA (May 2000). "Activation of phospholipase D1 by Cdc42 requires the Rho insert region". The Journal of Biological Chemistry 275 (21): 15665–8. doi:10.1074/jbc.M000076200. PMID 10747870. 
  39. ^ Nakazawa T, Watabe AM, Tezuka T, Yoshida Y, Yokoyama K, Umemori H, Inoue A, Okabe S, Manabe T, Yamamoto T (Jul 2003). "p250GAP, a novel brain-enriched GTPase-activating protein for Rho family GTPases, is involved in the N-methyl-d-aspartate receptor signaling". Molecular Biology of the Cell 14 (7): 2921–34. doi:10.1091/mbc.E02-09-0623. PMC 165687. PMID 12857875. 
  40. ^ Zhao C, Ma H, Bossy-Wetzel E, Lipton SA, Zhang Z, Feng GS (Sep 2003). "GC-GAP, a Rho family GTPase-activating protein that interacts with signaling adapters Gab1 and Gab2". The Journal of Biological Chemistry 278 (36): 34641–53. doi:10.1074/jbc.M304594200. PMID 12819203. 
  41. ^ Nakamura T, Komiya M, Sone K, Hirose E, Gotoh N, Morii H, Ohta Y, Mori N (Dec 2002). "Grit, a GTPase-activating protein for the Rho family, regulates neurite extension through association with the TrkA receptor and N-Shc and CrkL/Crk adapter molecules". Molecular and Cellular Biology 22 (24): 8721–34. doi:10.1128/MCB.22.24.8721-8734.2002. PMC 139861. PMID 12446789. 
  42. ^ Aspenström P (Jul 1997). "A Cdc42 target protein with homology to the non-kinase domain of FER has a potential role in regulating the actin cytoskeleton". Current Biology 7 (7): 479–87. doi:10.1016/S0960-9822(06)00219-3. PMID 9210375. 
  43. ^ a b Tian L, Nelson DL, Stewart DM (Mar 2000). "Cdc42-interacting protein 4 mediates binding of the Wiskott-Aldrich syndrome protein to microtubules". The Journal of Biological Chemistry 275 (11): 7854–61. doi:10.1074/jbc.275.11.7854. PMID 10713100. 
  44. ^ Carlier MF, Nioche P, Broutin-L'Hermite I, Boujemaa R, Le Clainche C, Egile C, Garbay C, Ducruix A, Sansonetti P, Pantaloni D (Jul 2000). "GRB2 links signaling to actin assembly by enhancing interaction of neural Wiskott-Aldrich syndrome protein (N-WASp) with actin-related protein (ARP2/3) complex". The Journal of Biological Chemistry 275 (29): 21946–52. doi:10.1074/jbc.M000687200. PMID 10781580. 
  45. ^ Miki H, Sasaki T, Takai Y, Takenawa T (Jan 1998). "Induction of filopodium formation by a WASP-related actin-depolymerizing protein N-WASP". Nature 391 (6662): 93–6. doi:10.1038/34208. PMID 9422512. 
  46. ^ Kim AS, Kakalis LT, Abdul-Manan N, Liu GA, Rosen MK (Mar 2000). "Autoinhibition and activation mechanisms of the Wiskott-Aldrich syndrome protein". Nature 404 (6774): 151–8. doi:10.1038/35004513. PMID 10724160. 
  47. ^ Kolluri R, Tolias KF, Carpenter CL, Rosen FS, Kirchhausen T (May 1996). "Direct interaction of the Wiskott-Aldrich syndrome protein with the GTPase Cdc42". Proceedings of the National Academy of Sciences of the United States of America 93 (11): 5615–8. doi:10.1073/pnas.93.11.5615. PMC 39296. PMID 8643625. 
  48. ^ Symons M, Derry JM, Karlak B, Jiang S, Lemahieu V, Mccormick F, Francke U, Abo A (Mar 1996). "Wiskott-Aldrich syndrome protein, a novel effector for the GTPase CDC42Hs, is implicated in actin polymerization". Cell 84 (5): 723–34. doi:10.1016/S0092-8674(00)81050-8. PMID 8625410. 

Further reading[edit]

External links[edit]