From Wikipedia, the free encyclopedia
Jump to: navigation, search
Coenzyme Q9
Available structures
PDB Ortholog search: PDBe, RCSB
Symbols COQ9 ; C16orf49; COQ10D5
External IDs OMIM612837 MGI1915164 HomoloGene6477 GeneCards: COQ9 Gene
Species Human Mouse
Entrez 57017 67914
Ensembl ENSG00000088682 ENSMUSG00000031782
UniProt O75208 Q8K1Z0
RefSeq (mRNA) NM_020312 NM_026452
RefSeq (protein) NP_064708 NP_080728
Location (UCSC) Chr 16:
57.45 – 57.46 Mb
Chr 8:
94.84 – 94.85 Mb
PubMed search [1] [2]

Ubiquinone biosynthesis protein COQ9, mitochondrial, also known as coenzyme Q9 homolog (COQ9), is a protein that in humans is encoded by the COQ9 gene.[1]


This locus represents a mitochondrial ubiquinone biosynthesis gene. The encoded protein is likely necessary for biosynthesis of coenzyme Q10, as mutations at this locus have been associated with autosomal-recessive neonatal-onset primary coenzyme Q10 deficiency.[1]

Clinical significance[edit]

It may be associated with Coenzyme Q10 deficiency.[2]

Model organisms[edit]

Model organisms have been used in the study of COQ9 function. A conditional knockout mouse line, called Coq9tm1a(KOMP)Wtsi[9][10] was generated as part of the International Knockout Mouse Consortium program — a high-throughput mutagenesis project to generate and distribute animal models of disease to interested scientists.[11][12][13]

Male and female animals underwent a standardized phenotypic screen to determine the effects of deletion.[7][14] Twenty two tests were carried out on homozygous mutant mice and one significant abnormality was observed: females displayed hyperactivity in an open field test.[7]


  1. ^ a b "Entrez Gene: coenzyme Q9 homolog (S. cerevisiae)". 
  2. ^ Online 'Mendelian Inheritance in Man' (OMIM) 607426
  3. ^ "Anxiety data for Coq9". Wellcome Trust Sanger Institute. 
  4. ^ "Dysmorphology data for Coq9". Wellcome Trust Sanger Institute. 
  5. ^ "Salmonella infection data for Coq9". Wellcome Trust Sanger Institute. 
  6. ^ "Citrobacter infection data for Coq9". Wellcome Trust Sanger Institute. 
  7. ^ a b c Gerdin AK (2010). "The Sanger Mouse Genetics Programme: High throughput characterisation of knockout mice". Acta Ophthalmologica 88: 925–7. doi:10.1111/j.1755-3768.2010.4142.x. 
  8. ^ Mouse Resources Portal, Wellcome Trust Sanger Institute.
  9. ^ "International Knockout Mouse Consortium". 
  10. ^ "Mouse Genome Informatics". 
  11. ^ Skarnes, W. C.; Rosen, B.; West, A. P.; Koutsourakis, M.; Bushell, W.; Iyer, V.; Mujica, A. O.; Thomas, M.; Harrow, J.; Cox, T.; Jackson, D.; Severin, J.; Biggs, P.; Fu, J.; Nefedov, M.; De Jong, P. J.; Stewart, A. F.; Bradley, A. (2011). "A conditional knockout resource for the genome-wide study of mouse gene function". Nature 474 (7351): 337–342. doi:10.1038/nature10163. PMC 3572410. PMID 21677750. 
  12. ^ Dolgin E (2011). "Mouse library set to be knockout". Nature 474 (7351): 262–3. doi:10.1038/474262a. PMID 21677718. 
  13. ^ Collins FS, Rossant J, Wurst W (2007). "A Mouse for All Reasons". Cell 128 (1): 9–13. doi:10.1016/j.cell.2006.12.018. PMID 17218247. 
  14. ^ van der Weyden L, White JK, Adams DJ, Logan DW (2011). "The mouse genetics toolkit: revealing function and mechanism.". Genome Biol 12 (6): 224. doi:10.1186/gb-2011-12-6-224. PMC 3218837. PMID 21722353. 

Further reading[edit]

This article incorporates text from the United States National Library of Medicine, which is in the public domain.