CREB-binding protein

From Wikipedia, the free encyclopedia
  (Redirected from CREB binding protein)
Jump to: navigation, search
CREBBP
Protein CREBBP PDB 1f81.png
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases CREBBP, AW558298, CBP, CBP/p300, KAT3A, p300/CBP, RSTS, CREB binding protein
External IDs MGI: 1098280 HomoloGene: 68393 GeneCards: 1387
Genetically Related Diseases
Disease Name References
obesity
RNA expression pattern
PBB GE CREBBP 202160 at tn.png

PBB GE CREBBP 211808 s at tn.png
More reference expression data
Orthologs
Species Human Mouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001079846
NM_004380

NM_001025432

RefSeq (protein)

NP_001073315.1
NP_004371.2

n/a

Location (UCSC) Chr 16: 3.73 – 3.88 Mb Chr 16: 4.08 – 4.21 Mb
PubMed search [2] [3]
Wikidata
View/Edit Human View/Edit Mouse

CREB-binding protein, also known as CREBBP or CBP, is a protein that in humans is encoded by the CREBBP gene.[4][5] The CREB protein carries out its function by activating transcription, where interaction with transcription factors is managed by one or more CREB domains: the nuclear receptor interaction domain (RID), the CREB and MYB interaction domain (KIX), the cysteine/histidine regions (TAZ1/CH1 and TAZ2/CH3) and the interferon response binding domain (IBiD). The CREB protein domains, KIX, TAZ1 and TAZ2, each bind tightly to a sequence spanning both transactivation domains 9aaTADs of transcription factor p53.[6][7]

Function[edit]

This gene is ubiquitously expressed and is involved in the transcriptional coactivation of many different transcription factors. First isolated as a nuclear protein that binds to cAMP-response element-binding protein (CREB), this gene is now known to play critical roles in embryonic development, growth control, and homeostasis by coupling chromatin remodeling to transcription factor recognition. The protein encoded by this gene has intrinsic histone acetyltransferase activity [8] and also acts as a scaffold to stabilize additional protein interactions with the transcription complex. This protein acetylates both histone and non-histone proteins. This protein shares regions of very high-sequence similarity with protein EP300 in its bromodomain, cysteine-histidine-rich regions, and histone acetyltransferase domain.[9] Recent results suggest that novel CBP-mediated post-translational N-glycosylation activity alters the conformation of CBP-interacting proteins, leading to regulation of gene expression, cell growth and differentiation,[10]

Clinical significance[edit]

Mutations in this gene cause Rubinstein-Taybi syndrome (RTS).[11] Chromosomal translocations involving this gene have been associated with acute myeloid leukemia.[9][12] Hypothalamic expression of this gene in mice correlates with mouse lifespan, and when CBP is inhibited in C. elegans by RNAi, there is a proportional fold-change decrease in lifespan.

Small molecule inhibition[edit]

A small molecule inhibitor (I-CBP112) binding to the bromodomain domain of CBP/p300 has been developed for leukaemia therapy.[13]

Interactions[edit]

CREB-binding protein has been shown to interact with:

References[edit]

  1. ^ "chibi.ubc.ca/Gemma/phenotypes.html?phenotypeUrlId=DOID_9970&geneId=29340". 
  2. ^ "Human PubMed Reference:". 
  3. ^ "Mouse PubMed Reference:". 
  4. ^ Chrivia JC, Kwok RP, Lamb N, Hagiwara M, Montminy MR, Goodman RH (October 1993). "Phosphorylated CREB binds specifically to the nuclear protein CBP". Nature. 365 (6449): 855–9. Bibcode:1993Natur.365..855C. doi:10.1038/365855a0. PMID 8413673. 
  5. ^ Wydner KL, Bhattacharya S, Eckner R, Lawrence JB, Livingston DM (November 1995). "Localization of human CREB-binding protein gene (CREBBP) to 16p13.2-p13.3 by fluorescence in situ hybridization". Genomics. 30 (2): 395–6. PMID 8586450. 
  6. ^ Teufel DP, Freund SM, Bycroft M, Fersht AR (April 2007). "Four domains of p300 each bind tightly to a sequence spanning both transactivation subdomains of p53". Proceedings of the National Academy of Sciences of the United States of America. 104 (17): 7009–14. Bibcode:2007PNAS..104.7009T. doi:10.1073/pnas.0702010104. PMC 1855428free to read. PMID 17438265. ; Piskacek S, Gregor M, Nemethova M, Grabner M, Kovarik P, Piskacek M (June 2007). "Nine-amino-acid transactivation domain: establishment and prediction utilities". Genomics. 89 (6): 756–68. doi:10.1016/j.ygeno.2007.02.003. PMID 17467953. ; Piskacek M (2009-11-05). "9aaTAD is a common transactivation domain recruits multiple general coactivators TAF9, MED15, CBP/p300 and GCN5". Nature Precedings Pre-publication. doi:10.1038/npre.2009.3488.2. ; Piskacek M (2009-11-05). "9aaTADs mimic DNA to interact with a pseudo-DNA Binding Domain KIX of Med15 (Molecular Chameleons)". Nature Precedings Pre-publication. doi:10.1038/npre.2009.3939.1. ; Piskacek M (2009-11-20). "9aaTAD Prediction result (2006)". Nature Precedings Pre-publication. doi:10.1038/npre.2009.3984.1. 
  7. ^ The prediction for 9aaTADs (for both acidic and hydrophilic transactivation domains) is available online from ExPASy http://us.expasy.org/tools/ and EMBnet Spain http://www.es.embnet.org/Services/EMBnetAT/htdoc/9aatad/
  8. ^ Ogryzko VV et al. "The transcriptional coactivators p300 and CBP are histone acetyltransferases". Cell. 1996 87(5):953-9.[1]
  9. ^ a b "Entrez Gene: CREBBP (CREB-binding protein)". 
  10. ^ Siddique H, Rao VN, Reddy ES (August 2009). "CBP-mediated post-translational N-glycosylation of BRCA2". International Journal of Oncology. 35 (2): 387–91. doi:10.3892/ijo_00000351. PMID 19578754. 
  11. ^ Petrij F, Giles RH, Dauwerse HG, Saris JJ, Hennekam RC, Masuno M, Tommerup N, van Ommen GJ, Goodman RH, Peters DJ (July 1995). "Rubinstein-Taybi syndrome caused by mutations in the transcriptional co-activator CBP". Nature. 376 (6538): 348–51. Bibcode:1995Natur.376..348P. doi:10.1038/376348a0. PMID 7630403. 
  12. ^ Vizmanos JL, Larráyoz MJ, Lahortiga I, Floristán F, Alvarez C, Odero MD, Novo FJ, Calasanz MJ (April 2003). "t(10;16)(q22;p13) and MORF-CREBBP fusion is a recurrent event in acute myeloid leukemia". Genes, Chromosomes & Cancer. 36 (4): 402–5. doi:10.1002/gcc.10174. PMID 12619164. 
  13. ^ Picaud S, Fedorov O, Thanasopoulou A, Leonards K, Jones K, Meier J, Olzscha H, Monteiro O, Martin S, Philpott M, Tumber A, Filippakopoulos P, Yapp C, Wells C, Che KH, Bannister A, Robson S, Kumar U, Parr N, Lee K, Lugo D, Jeffrey P, Taylor S, Vecellio ML, Bountra C, Brennan PE, O'Mahony A, Velichko S, Müller S, Hay D, Daniels DL, Urh M, La Thangue NB, Kouzarides T, Prinjha R, Schwaller J, Knapp S (December 2015). "Generation of a Selective Small Molecule Inhibitor of the CBP/p300 Bromodomain for Leukemia Therapy". Cancer Research. 75 (23): 5106–19. doi:10.1158/0008-5472.CAN-15-0236. PMC 4948672free to read. PMID 26552700. 
  14. ^ a b c Sano Y, Tokitou F, Dai P, Maekawa T, Yamamoto T, Ishii S (October 1998). "CBP alleviates the intramolecular inhibition of ATF-2 function". The Journal of Biological Chemistry. 273 (44): 29098–105. doi:10.1074/jbc.273.44.29098. PMID 9786917. 
  15. ^ a b Kim J, Jia L, Stallcup MR, Coetzee GA (February 2005). "The role of protein kinase A pathway and cAMP responsive element-binding protein in androgen receptor-mediated transcription at the prostate-specific antigen locus". Journal of Molecular Endocrinology. 34 (1): 107–18. doi:10.1677/jme.1.01701. PMID 15691881. 
  16. ^ Frønsdal K, Engedal N, Slagsvold T, Saatcioglu F (November 1998). "CREB binding protein is a coactivator for the androgen receptor and mediates cross-talk with AP-1". The Journal of Biological Chemistry. 273 (48): 31853–9. doi:10.1074/jbc.273.48.31853. PMID 9822653. 
  17. ^ Ishitani K, Yoshida T, Kitagawa H, Ohta H, Nozawa S, Kato S (July 2003). "p54nrb acts as a transcriptional coactivator for activation function 1 of the human androgen receptor". Biochemical and Biophysical Research Communications. 306 (3): 660–5. doi:10.1016/S0006-291X(03)01021-0. PMID 12810069. 
  18. ^ a b Aarnisalo P, Palvimo JJ, Jänne OA (March 1998). "CREB-binding protein in androgen receptor-mediated signaling". Proceedings of the National Academy of Sciences of the United States of America. 95 (5): 2122–7. Bibcode:1998PNAS...95.2122A. doi:10.1073/pnas.95.5.2122. PMC 19270free to read. PMID 9482849. 
  19. ^ Pitkänen J, Doucas V, Sternsdorf T, Nakajima T, Aratani S, Jensen K, Will H, Vähämurto P, Ollila J, Vihinen M, Scott HS, Antonarakis SE, Kudoh J, Shimizu N, Krohn K, Peterson P (June 2000). "The autoimmune regulator protein has transcriptional transactivating properties and interacts with the common coactivator CREB-binding protein". The Journal of Biological Chemistry. 275 (22): 16802–9. doi:10.1074/jbc.M908944199. PMID 10748110. 
  20. ^ Iioka T, Furukawa K, Yamaguchi A, Shindo H, Yamashita S, Tsukazaki T (August 2003). "P300/CBP acts as a coactivator to cartilage homeoprotein-1 (Cart1), paired-like homeoprotein, through acetylation of the conserved lysine residue adjacent to the homeodomain". Journal of Bone and Mineral Research. 18 (8): 1419–29. doi:10.1359/jbmr.2003.18.8.1419. PMID 12929931. 
  21. ^ a b c Fan S, Ma YX, Wang C, Yuan RQ, Meng Q, Wang JA, Erdos M, Goldberg ID, Webb P, Kushner PJ, Pestell RG, Rosen EM (January 2002). "p300 Modulates the BRCA1 inhibition of estrogen receptor activity". Cancer Research. 62 (1): 141–51. PMID 11782371. 
  22. ^ Pao GM, Janknecht R, Ruffner H, Hunter T, Verma IM (February 2000). "CBP/p300 interact with and function as transcriptional coactivators of BRCA1". Proceedings of the National Academy of Sciences of the United States of America. 97 (3): 1020–5. Bibcode:2000PNAS...97.1020P. doi:10.1073/pnas.97.3.1020. PMC 15508free to read. PMID 10655477. 
  23. ^ Chai YL, Cui J, Shao N, Shyam E, Reddy P, Rao VN (January 1999). "The second BRCT domain of BRCA1 proteins interacts with p53 and stimulates transcription from the p21WAF1/CIP1 promoter". Oncogene. 18 (1): 263–8. doi:10.1038/sj.onc.1202323. PMID 9926942. 
  24. ^ Benezra M, Chevallier N, Morrison DJ, MacLachlan TK, El-Deiry WS, Licht JD (July 2003). "BRCA1 augments transcription by the NF-kappaB transcription factor by binding to the Rel domain of the p65/RelA subunit". The Journal of Biological Chemistry. 278 (29): 26333–41. doi:10.1074/jbc.M303076200. PMID 12700228. 
  25. ^ a b Neish AS, Anderson SF, Schlegel BP, Wei W, Parvin JD (February 1998). "Factors associated with the mammalian RNA polymerase II holoenzyme". Nucleic Acids Research. 26 (3): 847–53. doi:10.1093/nar/26.3.847. PMC 147327free to read. PMID 9443979. 
  26. ^ Kawabuchi M, Satomi Y, Takao T, Shimonishi Y, Nada S, Nagai K, Tarakhovsky A, Okada M (April 2000). "Transmembrane phosphoprotein Cbp regulates the activities of Src-family tyrosine kinases". Nature. 404 (6781): 999–1003. doi:10.1038/35010121. PMID 10801129. 
  27. ^ Kovács KA, Steinmann M, Magistretti PJ, Halfon O, Cardinaux JR (September 2003). "CCAAT/enhancer-binding protein family members recruit the coactivator CREB-binding protein and trigger its phosphorylation". The Journal of Biological Chemistry. 278 (38): 36959–65. doi:10.1074/jbc.M303147200. PMID 12857754. 
  28. ^ Lorentz O, Suh ER, Taylor JK, Boudreau F, Traber PG (March 1999). "CREB-binding [corrected] protein interacts with the homeodomain protein Cdx2 and enhances transcriptional activity". The Journal of Biological Chemistry. 274 (11): 7196–9. doi:10.1074/jbc.274.11.7196. PMID 10066780. 
  29. ^ Shi Y, Venkataraman SL, Dodson GE, Mabb AM, LeBlanc S, Tibbetts RS (April 2004). "Direct regulation of CREB transcriptional activity by ATM in response to genotoxic stress". Proceedings of the National Academy of Sciences of the United States of America. 101 (16): 5898–903. Bibcode:2004PNAS..101.5898S. doi:10.1073/pnas.0307718101. PMC 395895free to read. PMID 15073328. 
  30. ^ Shimomura A, Ogawa Y, Kitani T, Fujisawa H, Hagiwara M (July 1996). "Calmodulin-dependent protein kinase II potentiates transcriptional activation through activating transcription factor 1 but not cAMP response element-binding protein". The Journal of Biological Chemistry. 271 (30): 17957–60. doi:10.1074/jbc.271.30.17957. PMID 8663317. 
  31. ^ Radhakrishnan I, Pérez-Alvarado GC, Parker D, Dyson HJ, Montminy MR, Wright PE (December 1997). "Solution structure of the KIX domain of CBP bound to the transactivation domain of CREB: a model for activator:coactivator interactions". Cell. 91 (6): 741–52. doi:10.1016/S0092-8674(00)80463-8. PMID 9413984. 
  32. ^ a b Zor T, Mayr BM, Dyson HJ, Montminy MR, Wright PE (November 2002). "Roles of phosphorylation and helix propensity in the binding of the KIX domain of CREB-binding protein by constitutive (c-Myb) and inducible (CREB) activators". The Journal of Biological Chemistry. 277 (44): 42241–8. doi:10.1074/jbc.M207361200. PMID 12196545. 
  33. ^ a b Giebler HA, Lemasson I, Nyborg JK (July 2000). "p53 recruitment of CREB binding protein mediated through phosphorylated CREB: a novel pathway of tumor suppressor regulation". Molecular and Cellular Biology. 20 (13): 4849–58. doi:10.1128/MCB.20.13.4849-4858.2000. PMC 85936free to read. PMID 10848610. 
  34. ^ a b Zhang Q, Vo N, Goodman RH (July 2000). "Histone binding protein RbAp48 interacts with a complex of CREB binding protein and phosphorylated CREB". Molecular and Cellular Biology. 20 (14): 4970–8. doi:10.1128/MCB.20.14.4970-4978.2000. PMC 85947free to read. PMID 10866654. 
  35. ^ a b Ernst P, Wang J, Huang M, Goodman RH, Korsmeyer SJ (April 2001). "MLL and CREB bind cooperatively to the nuclear coactivator CREB-binding protein". Molecular and Cellular Biology. 21 (7): 2249–58. doi:10.1128/MCB.21.7.2249-2258.2001. PMC 86859free to read. PMID 11259575. 
  36. ^ Ledo F, Kremer L, Mellström B, Naranjo JR (September 2002). "Ca2+-dependent block of CREB-CBP transcription by repressor DREAM". The EMBO Journal. 21 (17): 4583–92. doi:10.1093/emboj/cdf440. PMC 126180free to read. PMID 12198160. 
  37. ^ a b Yamaguchi Y, Wada T, Suzuki F, Takagi T, Hasegawa J, Handa H (August 1998). "Casein kinase II interacts with the bZIP domains of several transcription factors". Nucleic Acids Research. 26 (16): 3854–61. doi:10.1093/nar/26.16.3854. PMC 147779free to read. PMID 9685505. 
  38. ^ Li S, Aufiero B, Schiltz RL, Walsh MJ (June 2000). "Regulation of the homeodomain CCAAT displacement/cut protein function by histone acetyltransferases p300/CREB-binding protein (CBP)-associated factor and CBP". Proceedings of the National Academy of Sciences of the United States of America. 97 (13): 7166–71. Bibcode:2000PNAS...97.7166L. doi:10.1073/pnas.130028697. PMC 16517free to read. PMID 10852958. 
  39. ^ a b c d Cho H, Orphanides G, Sun X, Yang XJ, Ogryzko V, Lees E, Nakatani Y, Reinberg D (September 1998). "A human RNA polymerase II complex containing factors that modify chromatin structure". Molecular and Cellular Biology. 18 (9): 5355–63. PMC 109120free to read. PMID 9710619. 
  40. ^ Zhao F, McCarrick-Walmsley R, Akerblad P, Sigvardsson M, Kadesch T (June 2003). "Inhibition of p300/CBP by early B-cell factor". Molecular and Cellular Biology. 23 (11): 3837–46. doi:10.1128/MCB.23.11.3837-3846.2003. PMC 155219free to read. PMID 12748286. 
  41. ^ Chakraborty S, Senyuk V, Sitailo S, Chi Y, Nucifora G (November 2001). "Interaction of EVI1 with cAMP-responsive element-binding protein-binding protein (CBP) and p300/CBP-associated factor (P/CAF) results in reversible acetylation of EVI1 and in co-localization in nuclear speckles". The Journal of Biological Chemistry. 276 (48): 44936–43. doi:10.1074/jbc.M106733200. PMID 11568182. 
  42. ^ a b Sheppard HM, Harries JC, Hussain S, Bevan C, Heery DM (January 2001). "Analysis of the steroid receptor coactivator 1 (SRC1)-CREB binding protein interaction interface and its importance for the function of SRC1". Molecular and Cellular Biology. 21 (1): 39–50. doi:10.1128/MCB.21.1.39-50.2001. PMC 86566free to read. PMID 11113179. 
  43. ^ Nasrin N, Ogg S, Cahill CM, Biggs W, Nui S, Dore J, Calvo D, Shi Y, Ruvkun G, Alexander-Bridges MC (September 2000). "DAF-16 recruits the CREB-binding protein coactivator complex to the insulin-like growth factor binding protein 1 promoter in HepG2 cells". Proceedings of the National Academy of Sciences of the United States of America. 97 (19): 10412–7. Bibcode:2000PNAS...9710412N. doi:10.1073/pnas.190326997. PMC 27038free to read. PMID 10973497. 
  44. ^ Dai P, Akimaru H, Tanaka Y, Maekawa T, Nakafuku M, Ishii S (March 1999). "Sonic Hedgehog-induced activation of the Gli1 promoter is mediated by GLI3". The Journal of Biological Chemistry. 274 (12): 8143–52. doi:10.1074/jbc.274.12.8143. PMID 10075717. 
  45. ^ a b c Tini M, Benecke A, Um SJ, Torchia J, Evans RM, Chambon P (February 2002). "Association of CBP/p300 acetylase and thymine DNA glycosylase links DNA repair and transcription". Molecular Cell. 9 (2): 265–77. doi:10.1016/S1097-2765(02)00453-7. PMID 11864601. 
  46. ^ Ema M, Hirota K, Mimura J, Abe H, Yodoi J, Sogawa K, Poellinger L, Fujii-Kuriyama Y (April 1999). "Molecular mechanisms of transcription activation by HLF and HIF1alpha in response to hypoxia: their stabilization and redox signal-induced interaction with CBP/p300". The EMBO Journal. 18 (7): 1905–14. doi:10.1093/emboj/18.7.1905. PMC 1171276free to read. PMID 10202154. 
  47. ^ Bhattacharya S, Michels CL, Leung MK, Arany ZP, Kung AL, Livingston DM (January 1999). "Functional role of p35srj, a novel p300/CBP binding protein, during transactivation by HIF-1". Genes & Development. 13 (1): 64–75. doi:10.1101/gad.13.1.64. PMC 316375free to read. PMID 9887100. 
  48. ^ Park YK, Ahn DR, Oh M, Lee T, Yang EG, Son M, Park H (July 2008). "Nitric oxide donor, (+/-)-S-nitroso-N-acetylpenicillamine, stabilizes transactive hypoxia-inducible factor-1alpha by inhibiting von Hippel-Lindau recruitment and asparagine hydroxylation". Molecular Pharmacology. 74 (1): 236–45. doi:10.1124/mol.108.045278. PMID 18426857. 
  49. ^ Hofmann TG, Möller A, Sirma H, Zentgraf H, Taya Y, Dröge W, Will H, Schmitz ML (January 2002). "Regulation of p53 activity by its interaction with homeodomain-interacting protein kinase-2". Nature Cell Biology. 4 (1): 1–10. doi:10.1038/ncb715. PMID 11740489. 
  50. ^ Soutoglou E, Papafotiou G, Katrakili N, Talianidis I (April 2000). "Transcriptional activation by hepatocyte nuclear factor-1 requires synergism between multiple coactivator proteins". The Journal of Biological Chemistry. 275 (17): 12515–20. doi:10.1074/jbc.275.17.12515. PMID 10777539. 
  51. ^ Chariot A, van Lint C, Chapelier M, Gielen J, Merville MP, Bours V (July 1999). "CBP and histone deacetylase inhibition enhance the transactivation potential of the HOXB7 homeodomain-containing protein". Oncogene. 18 (27): 4007–14. doi:10.1038/sj.onc.1202776. PMID 10435624. 
  52. ^ Yoshida E, Aratani S, Itou H, Miyagishi M, Takiguchi M, Osumu T, Murakami K, Fukamizu A (December 1997). "Functional association between CBP and HNF4 in trans-activation". Biochemical and Biophysical Research Communications. 241 (3): 664–9. doi:10.1006/bbrc.1997.7871. PMID 9434765. 
  53. ^ Dell H, Hadzopoulou-Cladaras M (March 1999). "CREB-binding protein is a transcriptional coactivator for hepatocyte nuclear factor-4 and enhances apolipoprotein gene expression". The Journal of Biological Chemistry. 274 (13): 9013–21. doi:10.1074/jbc.274.13.9013. PMID 10085149. 
  54. ^ Vieyra D, Loewith R, Scott M, Bonnefin P, Boisvert FM, Cheema P, Pastyryeva S, Meijer M, Johnston RN, Bazett-Jones DP, McMahon S, Cole MD, Young D, Riabowol K (August 2002). "Human ING1 proteins differentially regulate histone acetylation". The Journal of Biological Chemistry. 277 (33): 29832–9. doi:10.1074/jbc.M200197200. PMID 12015309. 
  55. ^ Hong W, Resnick RJ, Rakowski C, Shalloway D, Taylor SJ, Blobel GA (November 2002). "Physical and functional interaction between the transcriptional cofactor CBP and the KH domain protein Sam68". Molecular Cancer Research. 1 (1): 48–55. PMID 12496368. 
  56. ^ Song CZ, Keller K, Murata K, Asano H, Stamatoyannopoulos G (March 2002). "Functional interaction between coactivators CBP/p300, PCAF, and transcription factor FKLF2". The Journal of Biological Chemistry. 277 (9): 7029–36. doi:10.1074/jbc.M108826200. PMC 2808425free to read. PMID 11748222. 
  57. ^ Geiman DE, Ton-That H, Johnson JM, Yang VW (March 2000). "Transactivation and growth suppression by the gut-enriched Krüppel-like factor (Krüppel-like factor 4) are dependent on acidic amino acid residues and protein-protein interaction". Nucleic Acids Research. 28 (5): 1106–13. doi:10.1093/nar/28.5.1106. PMC 102607free to read. PMID 10666450. 
  58. ^ Barlev NA, Poltoratsky V, Owen-Hughes T, Ying C, Liu L, Workman JL, Berger SL (March 1998). "Repression of GCN5 histone acetyltransferase activity via bromodomain-mediated binding and phosphorylation by the Ku-DNA-dependent protein kinase complex". Molecular and Cellular Biology. 18 (3): 1349–58. doi:10.1128/mcb.18.3.1349. PMC 108848free to read. PMID 9488450. 
  59. ^ Chen Q, Dowhan DH, Liang D, Moore DD, Overbeek PA (July 2002). "CREB-binding protein/p300 co-activation of crystallin gene expression". The Journal of Biological Chemistry. 277 (27): 24081–9. doi:10.1074/jbc.M201821200. PMID 11943779. 
  60. ^ Goto NK, Zor T, Martinez-Yamout M, Dyson HJ, Wright PE (November 2002). "Cooperativity in transcription factor binding to the coactivator CREB-binding protein (CBP). The mixed lineage leukemia protein (MLL) activation domain binds to an allosteric site on the KIX domain". The Journal of Biological Chemistry. 277 (45): 43168–74. doi:10.1074/jbc.M207660200. PMID 12205094. 
  61. ^ Shetty S, Takahashi T, Matsui H, Ayengar R, Raghow R (May 1999). "Transcriptional autorepression of Msx1 gene is mediated by interactions of Msx1 protein with a multi-protein transcriptional complex containing TATA-binding protein, Sp1 and cAMP-response-element-binding protein-binding protein (CBP/p300)". The Biochemical Journal. 339 ( Pt 3) (3): 751–8. doi:10.1042/0264-6021:3390751. PMC 1220213free to read. PMID 10215616. 
  62. ^ a b Bessa M, Saville MK, Watson RJ (June 2001). "Inhibition of cyclin A/Cdk2 phosphorylation impairs B-Myb transactivation function without affecting interactions with DNA or the CBP coactivator". Oncogene. 20 (26): 3376–86. doi:10.1038/sj.onc.1204439. PMID 11423988. 
  63. ^ Polesskaya A, Naguibneva I, Duquet A, Bengal E, Robin P, Harel-Bellan A (August 2001). "Interaction between acetylated MyoD and the bromodomain of CBP and/or p300". Molecular and Cellular Biology. 21 (16): 5312–20. doi:10.1128/MCB.21.16.5312-5320.2001. PMC 87255free to read. PMID 11463815. 
  64. ^ Sartorelli V, Huang J, Hamamori Y, Kedes L (February 1997). "Molecular mechanisms of myogenic coactivation by p300: direct interaction with the activation domain of MyoD and with the MADS box of MEF2C". Molecular and Cellular Biology. 17 (2): 1010–26. doi:10.1128/mcb.17.2.1010. PMC 231826free to read. PMID 9001254. 
  65. ^ a b Wu RC, Qin J, Hashimoto Y, Wong J, Xu J, Tsai SY, Tsai MJ, O'Malley BW (May 2002). "Regulation of SRC-3 (pCIP/ACTR/AIB-1/RAC-3/TRAM-1) Coactivator activity by I kappa B kinase". Molecular and Cellular Biology. 22 (10): 3549–61. doi:10.1128/MCB.22.10.3549-3561.2002. PMC 133790free to read. PMID 11971985. 
  66. ^ Naltner A, Wert S, Whitsett JA, Yan C (December 2000). "Temporal/spatial expression of nuclear receptor coactivators in the mouse lung". American Journal of Physiology. Lung Cellular and Molecular Physiology. 279 (6): L1066–74. PMID 11076796. 
  67. ^ Lee SK, Anzick SL, Choi JE, Bubendorf L, Guan XY, Jung YK, Kallioniemi OP, Kononen J, Trent JM, Azorsa D, Jhun BH, Cheong JH, Lee YC, Meltzer PS, Lee JW (November 1999). "A nuclear factor, ASC-2, as a cancer-amplified transcriptional coactivator essential for ligand-dependent transactivation by nuclear receptors in vivo". The Journal of Biological Chemistry. 274 (48): 34283–93. doi:10.1074/jbc.274.48.34283. PMID 10567404. 
  68. ^ Lee SK, Jung SY, Kim YS, Na SY, Lee YC, Lee JW (February 2001). "Two distinct nuclear receptor-interaction domains and CREB-binding protein-dependent transactivation function of activating signal cointegrator-2". Molecular Endocrinology. 15 (2): 241–54. doi:10.1210/me.15.2.241. PMID 11158331. 
  69. ^ a b Sun Y, Nadal-Vicens M, Misono S, Lin MZ, Zubiaga A, Hua X, Fan G, Greenberg ME (February 2001). "Neurogenin promotes neurogenesis and inhibits glial differentiation by independent mechanisms". Cell. 104 (3): 365–76. doi:10.1016/S0092-8674(01)00224-0. PMID 11239394. 
  70. ^ Yang T, Davis RJ, Chow CW (October 2001). "Requirement of two NFATc4 transactivation domains for CBP potentiation". The Journal of Biological Chemistry. 276 (43): 39569–76. doi:10.1074/jbc.M102961200. PMID 11514544. 
  71. ^ Katoh Y, Itoh K, Yoshida E, Miyagishi M, Fukamizu A, Yamamoto M (October 2001). "Two domains of Nrf2 cooperatively bind CBP, a CREB binding protein, and synergistically activate transcription". Genes to Cells. 6 (10): 857–68. doi:10.1046/j.1365-2443.2001.00469.x. PMID 11683914. 
  72. ^ Hung HL, Kim AY, Hong W, Rakowski C, Blobel GA (April 2001). "Stimulation of NF-E2 DNA binding by CREB-binding protein (CBP)-mediated acetylation". The Journal of Biological Chemistry. 276 (14): 10715–21. doi:10.1074/jbc.M007846200. PMID 11154691. 
  73. ^ Almlöf T, Wallberg AE, Gustafsson JA, Wright AP (June 1998). "Role of important hydrophobic amino acids in the interaction between the glucocorticoid receptor tau 1-core activation domain and target factors". Biochemistry. 37 (26): 9586–94. doi:10.1021/bi973029x. PMID 9649342. 
  74. ^ Kasper LH, Brindle PK, Schnabel CA, Pritchard CE, Cleary ML, van Deursen JM (January 1999). "CREB binding protein interacts with nucleoporin-specific FG repeats that activate transcription and mediate NUP98-HOXA9 oncogenicity". Molecular and Cellular Biology. 19 (1): 764–76. PMC 83933free to read. PMID 9858599. 
  75. ^ Ito A, Kawaguchi Y, Lai CH, Kovacs JJ, Higashimoto Y, Appella E, Yao TP (November 2002). "MDM2-HDAC1-mediated deacetylation of p53 is required for its degradation". The EMBO Journal. 21 (22): 6236–45. doi:10.1093/emboj/cdf616. PMC 137207free to read. PMID 12426395. 
  76. ^ Livengood JA, Scoggin KE, Van Orden K, McBryant SJ, Edayathumangalam RS, Laybourn PJ, Nyborg JK (March 2002). "p53 Transcriptional activity is mediated through the SRC1-interacting domain of CBP/p300". The Journal of Biological Chemistry. 277 (11): 9054–61. doi:10.1074/jbc.M108870200. PMID 11782467. 
  77. ^ Puigserver P, Adelmant G, Wu Z, Fan M, Xu J, O'Malley B, Spiegelman BM (November 1999). "Activation of PPARgamma coactivator-1 through transcription factor docking". Science. 286 (5443): 1368–71. doi:10.1126/science.286.5443.1368. PMID 10558993. 
  78. ^ Karetsou Z, Kretsovali A, Murphy C, Tsolas O, Papamarcaki T (April 2002). "Prothymosin alpha interacts with the CREB-binding protein and potentiates transcription". EMBO Reports. 3 (4): 361–6. doi:10.1093/embo-reports/kvf071. PMC 1084059free to read. PMID 11897665. 
  79. ^ a b Matsuzaki K, Minami T, Tojo M, Honda Y, Saitoh N, Nagahiro S, Saya H, Nakao M (March 2003). "PML-nuclear bodies are involved in cellular serum response". Genes to Cells. 8 (3): 275–86. doi:10.1046/j.1365-2443.2003.00632.x. PMID 12622724. 
  80. ^ Doucas V, Tini M, Egan DA, Evans RM (March 1999). "Modulation of CREB binding protein function by the promyelocytic (PML) oncoprotein suggests a role for nuclear bodies in hormone signaling". Proceedings of the National Academy of Sciences of the United States of America. 96 (6): 2627–32. Bibcode:1999PNAS...96.2627D. doi:10.1073/pnas.96.6.2627. PMC 15819free to read. PMID 10077561. 
  81. ^ Zhong S, Delva L, Rachez C, Cenciarelli C, Gandini D, Zhang H, Kalantry S, Freedman LP, Pandolfi PP (November 1999). "A RA-dependent, tumour-growth suppressive transcription complex is the target of the PML-RARalpha and T18 oncoproteins". Nature Genetics. 23 (3): 287–95. doi:10.1038/15463. PMID 10610177. 
  82. ^ Jang HD, Yoon K, Shin YJ, Kim J, Lee SY (June 2004). "PIAS3 suppresses NF-kappaB-mediated transcription by interacting with the p65/RelA subunit". The Journal of Biological Chemistry. 279 (23): 24873–80. doi:10.1074/jbc.M313018200. PMID 15140884. 
  83. ^ Zhong H, May MJ, Jimi E, Ghosh S (March 2002). "The phosphorylation status of nuclear NF-kappa B determines its association with CBP/p300 or HDAC-1". Molecular Cell. 9 (3): 625–36. doi:10.1016/S1097-2765(02)00477-X. PMID 11931769. 
  84. ^ Parry GC, Mackman N (December 1997). "Role of cyclic AMP response element-binding protein in cyclic AMP inhibition of NF-kappaB-mediated transcription". Journal of Immunology. 159 (11): 5450–6. PMID 9548485. 
  85. ^ Gerritsen ME, Williams AJ, Neish AS, Moore S, Shi Y, Collins T (April 1997). "CREB-binding protein/p300 are transcriptional coactivators of p65". Proceedings of the National Academy of Sciences of the United States of America. 94 (7): 2927–32. Bibcode:1997PNAS...94.2927G. doi:10.1073/pnas.94.7.2927. PMC 20299free to read. PMID 9096323. 
  86. ^ Merienne K, Pannetier S, Harel-Bellan A, Sassone-Corsi P (October 2001). "Mitogen-regulated RSK2-CBP interaction controls their kinase and acetylase activities". Molecular and Cellular Biology. 21 (20): 7089–96. doi:10.1128/MCB.21.20.7089-7096.2001. PMC 99884free to read. PMID 11564891. 
  87. ^ Hirose T, Fujii R, Nakamura H, Aratani S, Fujita H, Nakazawa M, Nakamura K, Nishioka K, Nakajima T (June 2003). "Regulation of CREB-mediated transcription by association of CDK4 binding protein p34SEI-1 with CBP". International Journal of Molecular Medicine. 11 (6): 705–12. doi:10.3892/ijmm.11.6.705. PMID 12736710. 
  88. ^ DiRenzo J, Shang Y, Phelan M, Sif S, Myers M, Kingston R, Brown M (October 2000). "BRG-1 is recruited to estrogen-responsive promoters and cooperates with factors involved in histone acetylation". Molecular and Cellular Biology. 20 (20): 7541–9. doi:10.1128/MCB.20.20.7541-7549.2000. PMC 86306free to read. PMID 11003650. 
  89. ^ Pearson KL, Hunter T, Janknecht R (December 1999). "Activation of Smad1-mediated transcription by p300/CBP". Biochimica et Biophysica Acta. 1489 (2-3): 354–64. doi:10.1016/S0167-4781(99)00166-9. PMID 10673036. 
  90. ^ a b Oliner JD, Andresen JM, Hansen SK, Zhou S, Tjian R (November 1996). "SREBP transcriptional activity is mediated through an interaction with the CREB-binding protein". Genes & Development. 10 (22): 2903–11. doi:10.1101/gad.10.22.2903. PMID 8918891. 
  91. ^ Aizawa H, Hu SC, Bobb K, Balakrishnan K, Ince G, Gurevich I, Cowan M, Ghosh A (January 2004). "Dendrite development regulated by CREST, a calcium-regulated transcriptional activator". Science. 303 (5655): 197–202. Bibcode:2004Sci...303..197A. doi:10.1126/science.1089845. PMID 14716005. 
  92. ^ Zhang JJ, Vinkemeier U, Gu W, Chakravarti D, Horvath CM, Darnell JE (December 1996). "Two contact regions between Stat1 and CBP/p300 in interferon gamma signaling". Proceedings of the National Academy of Sciences of the United States of America. 93 (26): 15092–6. Bibcode:1996PNAS...9315092Z. doi:10.1073/pnas.93.26.15092. PMC 26361free to read. PMID 8986769. 
  93. ^ Bhattacharya S, Eckner R, Grossman S, Oldread E, Arany Z, D'Andrea A, Livingston DM (September 1996). "Cooperation of Stat2 and p300/CBP in signalling induced by interferon-alpha". Nature. 383 (6598): 344–7. Bibcode:1996Natur.383..344B. doi:10.1038/383344a0. PMID 8848048. 
  94. ^ Litterst CM, Pfitzner E (December 2001). "Transcriptional activation by STAT6 requires the direct interaction with NCoA-1". The Journal of Biological Chemistry. 276 (49): 45713–21. doi:10.1074/jbc.M108132200. PMID 11574547. 
  95. ^ McDonald C, Reich NC (July 1999). "Cooperation of the transcriptional coactivators CBP and p300 with Stat6". Journal of Interferon & Cytokine Research. 19 (7): 711–22. doi:10.1089/107999099313550. PMID 10454341. 
  96. ^ Bradney C, Hjelmeland M, Komatsu Y, Yoshida M, Yao TP, Zhuang Y (January 2003). "Regulation of E2A activities by histone acetyltransferases in B lymphocyte development". The Journal of Biological Chemistry. 278 (4): 2370–6. doi:10.1074/jbc.M211464200. PMID 12435739. 
  97. ^ Misra P, Qi C, Yu S, Shah SH, Cao WQ, Rao MS, Thimmapaya B, Zhu Y, Reddy JK (May 2002). "Interaction of PIMT with transcriptional coactivators CBP, p300, and PBP differential role in transcriptional regulation". The Journal of Biological Chemistry. 277 (22): 20011–9. doi:10.1074/jbc.M201739200. PMID 11912212. 
  98. ^ Gizard F, Lavallée B, DeWitte F, Hum DW (September 2001). "A novel zinc finger protein TReP-132 interacts with CBP/p300 to regulate human CYP11A1 gene expression". The Journal of Biological Chemistry. 276 (36): 33881–92. doi:10.1074/jbc.M100113200. PMID 11349124. 
  99. ^ Silverman ES, Du J, Williams AJ, Wadgaonkar R, Drazen JM, Collins T (November 1998). "cAMP-response-element-binding-protein-binding protein (CBP) and p300 are transcriptional co-activators of early growth response factor-1 (Egr-1)". The Biochemical Journal. 336 ( Pt 1) (1): 183–9. doi:10.1042/bj3360183. PMC 1219856free to read. PMID 9806899. 

Further reading[edit]

  • Goldman PS, Tran VK, Goodman RH (1997). "The multifunctional role of the co-activator CBP in transcriptional regulation". Recent Progress in Hormone Research. 52: 103–19; discussion 119–20. PMID 9238849. 
  • Marcello A, Zoppé M, Giacca M (March 2001). "Multiple modes of transcriptional regulation by the HIV-1 Tat transactivator". IUBMB Life. 51 (3): 175–81. doi:10.1080/152165401753544241. PMID 11547919. 
  • Matt T (2002). "Transcriptional control of the inflammatory response: a role for the CREB-binding protein (CBP)". Acta Medica Austriaca. 29 (3): 77–9. doi:10.1046/j.1563-2571.2002.02010.x. PMID 12168567. 
  • Combes R, Balls M, Bansil L, Barratt M, Bell D, Botham P, Broadhead C, Clothier R, George E, Fentem J, Jackson M, Indans I, Loizu G, Navaratnam V, Pentreath V, Phillips B, Stemplewski H, Stewart J (2002). "An assessment of progress in the use of alternatives in toxicity testing since the publication of the report of the second FRAME Toxicity Committee (1991)". Alternatives to Laboratory Animals. 30 (4): 365–406. PMID 12234245. 
  • Minghetti L, Visentin S, Patrizio M, Franchini L, Ajmone-Cat MA, Levi G (May 2004). "Multiple actions of the human immunodeficiency virus type-1 Tat protein on microglial cell functions". Neurochemical Research. 29 (5): 965–78. doi:10.1023/B:NERE.0000021241.90133.89. PMID 15139295. 
  • Kino T, Pavlakis GN (April 2004). "Partner molecules of accessory protein Vpr of the human immunodeficiency virus type 1". DNA and Cell Biology. 23 (4): 193–205. doi:10.1089/104454904773819789. PMID 15142377. 
  • Greene WC, Chen LF (2004). "Regulation of NF-kappaB action by reversible acetylation". Novartis Foundation Symposium. 259: 208–17; discussion 218–25. doi:10.1002/0470862637.ch15. PMID 15171256. 
  • Liou LY, Herrmann CH, Rice AP (September 2004). "HIV-1 infection and regulation of Tat function in macrophages". The International Journal of Biochemistry & Cell Biology. 36 (9): 1767–75. doi:10.1016/j.biocel.2004.02.018. PMID 15183343. 
  • Pugliese A, Vidotto V, Beltramo T, Petrini S, Torre D (2005). "A review of HIV-1 Tat protein biological effects". Cell Biochemistry and Function. 23 (4): 223–7. doi:10.1002/cbf.1147. PMID 15473004. 
  • Bannwarth S, Gatignol A (January 2005). "HIV-1 TAR RNA: the target of molecular interactions between the virus and its host". Current HIV Research. 3 (1): 61–71. doi:10.2174/1570162052772924. PMID 15638724. 
  • Le Rouzic E, Benichou S (2006). "The Vpr protein from HIV-1: distinct roles along the viral life cycle". Retrovirology. 2: 11. doi:10.1186/1742-4690-2-11. PMC 554975free to read. PMID 15725353. 
  • Gibellini D, Vitone F, Schiavone P, Re MC (April 2005). "HIV-1 tat protein and cell proliferation and survival: a brief review". The New Microbiologica. 28 (2): 95–109. PMID 16035254. 
  • Hetzer C, Dormeyer W, Schnölzer M, Ott M (October 2005). "Decoding Tat: the biology of HIV Tat posttranslational modifications". Microbes and Infection / Institut Pasteur. 7 (13): 1364–9. doi:10.1016/j.micinf.2005.06.003. PMID 16046164. 
  • Peruzzi F (2006). "The multiple functions of HIV-1 Tat: proliferation versus apoptosis". Frontiers in Bioscience. 11: 708–17. doi:10.2741/1829. PMID 16146763. 

External links[edit]

This article incorporates text from the United States National Library of Medicine, which is in the public domain.