Cafestol

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
Cafestol
Cafestol.svg
Names
Preferred IUPAC name
(3bS,5aS,7R,8R,10aR,10bS)-7-(Hydroxymethyl)-10b-methyl-3b,4,5,6,7,8,9,10,10a,10b,11,12-dodecahydro-5a,8-methanocyclohepta[5,6]naphtho[2,1-b]furan-7-ol
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
KEGG
UNII
  • InChI=1/C20H28O3/c1-18-7-5-16-14(6-9-23-16)15(18)4-8-19-10-13(2-3-17(18)19)20(22,11-19)12-21/h6,9,13,15,17,21-22H,2-5,7-8,10-12H2,1H3/t13?,15-,17+,18-,19+,20+/m1/s1
    Key: DNJVYWXIDISQRD-GTATUSGQBK
  • OC[C@@]5(O)C[C@@]31C[C@@H]5CC[C@H]1[C@]4(C)CCc2occc2[C@H]4CC3
Properties
C20H28O3
Molar mass 316.441 g·mol−1
Melting point 158 to 162 °C (316 to 324 °F; 431 to 435 K)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Cafestol is a diterpenoid molecule present in coffee beans. It is under preliminary research to discern its possible biological effects.[1]

Sources[edit]

A typical bean of Coffea arabica contains about 0.4-0.7% cafestol by weight.[2] Cafestol is present in highest quantity in unfiltered coffee drinks such as French press coffee or Turkish coffee/Greek coffee. In filtered coffee drinks such as drip brewed coffee, it is present in only negligible amounts, as the paper filter in drip filtered coffee retains the diterpenes.[3]

Research[edit]

As coffee consumption may have effects on health, cafestol is under preliminary research to identify its possible biological actions.[1]

See also[edit]

References[edit]

  1. ^ a b Surma, Stanisław; Oparil, Suzanne (2021-08-09). "Coffee and Arterial Hypertension". Current Hypertension Reports. 23 (7): 38. doi:10.1007/s11906-021-01156-3. ISSN 1522-6417. PMC 8352830. PMID 34370111.
  2. ^ Kitzberger C, Scholz M, Benassi M (2014). "Bioactive compounds content in roasted coffee from traditional and modern Coffea arabica cultivars grown under the same edapho-climatic conditions". Food Research International. 61: 61–66. doi:10.1016/j.foodres.2014.04.031.
  3. ^ Zhang, Chen; Linforth, Robert; Fisk, Ian D. (2012). "Cafestol extraction yield from different coffee brew mechanisms". Food Research International. 49: 27–31. doi:10.1016/j.foodres.2012.06.032.