Cannonball problem

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
A square pyramid of cannonballs in a square frame

In the mathematics of figurate numbers, the cannonball problem asks which numbers are both square and square pyramidal. The problem can be stated as: given a square arrangement of cannonballs, for what size squares can these cannonballs also be arranged into a square pyramid. Equivalently, which squares can be represented as the sum of consecutive squares, starting from 1?

Formulation as a Diophantine equation[edit]

When cannonballs are stacked within a square frame, the number of balls is a square pyramidal number; Thomas Harriot gave a formula for this number around 1587, answering a question posed to him by Sir Walter Raleigh on their expedition to America.[1] Édouard Lucas formulated the cannonball problem as a Diophantine equation



Lucas conjectured that the only solutions are N = 1, M = 1, and N = 24, M = 70, using either 1 or 4900 cannon balls. It was not until 1918 that G. N. Watson found a proof for this fact, using elliptic functions. More recently, elementary proofs have been published.[2][3]


The solution N = 24, M = 70 can be used for constructing the Leech Lattice. The result has relevance to the bosonic string theory in 26 dimensions.[4]

Although it is possible to tile a geometric square with unequal squares, it is not possible to do so with a solution to the cannonball problem. The squares with side lengths from 1 to 24 have areas equal to the square with side length 70, but they cannot be arranged to tile it.

Related problems[edit]

The only numbers that are simultaneously triangular and square pyramidal, are 1, 55, 91, and 208335.[5][6].

There are no numbers (other than the trivial solution 1) that are both tetrahedral and square pyramidal.[6]

See also[edit]


  1. ^ David Darling. "Cannonball Problem". The Internet Encyclopedia of Science.
  2. ^ Ma, D. G. (1985). "An Elementary Proof of the Solutions to the Diophantine Equation ". Sichuan Daxue Xuebao. 4: 107–116.
  3. ^ Anglin, W. S. (1990). "The Square Pyramid Puzzle". American Mathematical Monthly. 97 (2): 120–124. doi:10.2307/2323911. JSTOR 2323911.
  4. ^ "week95". 1996-11-26. Retrieved 2012-01-04.
  5. ^ Sloane, N. J. A. (ed.). "Sequence A039596 (Numbers that are simultaneously triangular and square pyramidal)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  6. ^ a b Weisstein, Eric W. "Square Pyramidal Number". MathWorld.

External links[edit]