Cap product

From Wikipedia, the free encyclopedia

In algebraic topology the cap product is a method of adjoining a chain of degree p with a cochain of degree q, such that qp, to form a composite chain of degree pq. It was introduced by Eduard Čech in 1936, and independently by Hassler Whitney in 1938.


Let X be a topological space and R a coefficient ring. The cap product is a bilinear map on singular homology and cohomology

defined by contracting a singular chain with a singular cochain by the formula:

Here, the notation indicates the restriction of the simplicial map to its face spanned by the vectors of the base, see Simplex.


In analogy with the interpretation of the cup product in terms of the Künneth formula, we can explain the existence of the cap product in the following way. Using CW approximation we may assume that is a CW-complex and (and ) is the complex of its cellular chains (or cochains, respectively). Consider then the composition

where we are taking tensor products of chain complexes, is the diagonal map which induces the map
on the chain complex, and is the evaluation map (always 0 except for ).

This composition then passes to the quotient to define the cap product , and looking carefully at the above composition shows that it indeed takes the form of maps , which is always zero for .

Relation with Poincaré duality[edit]

For a closed orientable n-manifold M, we can define its fundamental class as a generator of , and then the cap product map

gives Poincaré duality. This also holds for (co)homology with coefficient in some other ring .

The slant product[edit]

If in the above discussion one replaces by , the construction can be (partially) replicated starting from the mappings


to get, respectively, slant products :


In case X = Y, the first one is related to the cap product by the diagonal map: .

These ‘products’ are in some ways more like division than multiplication, which is reflected in their notation.


The boundary of a cap product is given by :

Given a map f the induced maps satisfy :

The cap and cup product are related by :


, and

An interesting consequence of the last equation is that it makes into a right module.

See also[edit]


  • Hatcher, A., Algebraic Topology, Cambridge University Press (2002) ISBN 0-521-79540-0. Detailed discussion of homology theories for simplicial complexes and manifolds, singular homology, etc.
  • slant product at the nLab