From Wikipedia, the free encyclopedia
  (Redirected from Carageenan)
Jump to: navigation, search

Carrageenans or carrageenins (/ˌkærəˈɡnənz/ KARR-ə-GHEE-nənz from Irish carraigín, "little rock") are a family of linear sulphated polysaccharides that are extracted from red edible seaweeds. They are widely used in the food industry, for their gelling, thickening, and stabilizing properties. Their main application is in dairy and meat products, due to their strong binding to food proteins. There are three main varieties of carrageenan, which differ in their degree of sulphation. Kappa-carrageenan has one sulphate group per disaccharide. Iota-carrageenan has two sulphates per disaccharide. Lambda carrageenan has three sulphates per disaccharide.

Gelatinous extracts of the Chondrus crispus (Irish Moss) seaweed have been used as food additives since approximately the 15th century.[1] Carrageenan is a vegetarian and vegan alternative to gelatin in some applications or may be used to replace gelatin in confectionery.


The molecular structures of different types of carrageenan

Carrageenans are large, highly flexible molecules that curl forming helical structures. This gives them the ability to form a variety of different gels at room temperature. They are widely used in the food and other industries as thickening and stabilizing agents.

All carrageenans are high-molecular-weight polysaccharides made up of repeating galactose units and 3,6 anhydrogalactose (3,6-AG), both sulfated and nonsulfated. The units are joined by alternating α-1,3 and β-1,4 glycosidic linkages.

There are three main commercial classes of carrageenan:

  • Kappa forms strong, rigid gels in the presence of potassium ions; it reacts with dairy proteins. It is sourced mainly from Kappaphycus alvarezii.[2]
  • Iota forms soft gels in the presence of calcium ions. It is produced mainly from Eucheuma denticulatum.[2]
  • Lambda does not gel, and is used to thicken dairy products.

The primary differences that influence the properties of kappa, iota, and lambda carrageenan are the number and position of the ester sulfate groups on the repeating galactose units. Higher levels of ester sulfate lower the solubility temperature of the carrageenan and produce lower strength gels, or contribute to gel inhibition (lambda carrageenan).

Many red algal species produce different types of carrageenans during their developmental history. For instance, the genus Gigartina produces mainly kappa carrageenans during its gametophytic stage, and lambda carrageenans during its sporophytic stage.

All are soluble in hot water, but in cold water, only the lambda form (and the sodium salts of the other two) are soluble.

When used in food products, carrageenan has the EU additive E-number E407 or E407a when present as "processed eucheuma seaweed".[3] Technically carrageenan is considered a dietary fibre.[4][5]

In parts of Scotland and Ireland, where it is known by a variety of local and native names, Chondrus crispus is boiled in milk and strained, before sugar and other flavourings such as vanilla, cinnamon, brandy, or whisky are added. The end-product is a kind of jelly similar to pannacotta, tapioca, or blancmange.


Eucheuma denticulatum being farmed for iota-carrageenan in an off-bottom cultivation in Tanzania.

Although carrageenans were introduced on an industrial scale in the 1930s, they were first used in China around 600 B.C. (where Gigartina was used) and in Ireland around 400 A.D.[citation needed] Carrageen gelatin can be prepared at home using the traditional recipe found in Diderot's Encyclopédie and used for centuries. 5oz rinsed Irish moss is cooked with 8 quarts of water for 10 minutes, stirred as it boils. Hard water should be mixed with 1/2 oz of borax. Two quarts of cold water are rapidly added to the hot brew, and after the mixture has cooled it is strained through a cloth. It is then cooled for 24 hours and becomes gelatinous.[citation needed]

As of 2011, global sales of carrageenan were estimated at $640 million.[6] The largest producer of industrial carrageenan was the Philippines, where cultivated seaweed produces about 80% of the world supply,[7] while China is the main exporter to global markets in the US and Europe.[6] The most commonly used sources are E. cottonii (Kappaphycus alvarezii, K.striatum) and E. spinosum (Eucheuma denticulatum), which together provide about three-quarters of the world production. These grow from the sea surface to a depth of about 2 metres. The seaweed is normally grown on nylon lines strung between bamboo floats, and it is harvested after three months or so, when each plant weighs approximately 1 kg.

The E. cottonii variety has been reclassified as Kappaphycus cottonii by Maxwell Doty (1988), thereby introducing the genus Kappaphycus, on the basis of the phycocolloids produced (namely kappa carrageenan).[citation needed]

After harvest, the seaweed is dried, baled, and sent to the carrageenan manufacturer. There the seaweed is ground, sifted to remove impurities such as sand, and washed thoroughly. After treatment with hot alkali solution (e.g., 5–8% potassium hydroxide), the cellulose is removed from the carrageenan by centrifugation and filtration. The resulting carrageenan solution is then concentrated by evaporation. It is dried and ground to specification.

There are three types of industrial processing:


This is only performed using E. cottonii or E. spinosum. The raw weed is first sorted and crude contaminants are removed by hand. The weed is then washed to remove salt and sand, and then cooked in hot alkali to increase the gel strength. The cooked weed is washed, dried, and milled. E. spinosum undergoes a much milder cooking cycle, as it dissolves quite readily. The product is called semi-refined carrageenan, Philippines natural grade or, in the U.S., it simply falls under the common carrageenan specification.[8]

                           cleaned and washed seaweed 
                             coarse filtration   → seaweed residue
                              fine filtration    → used filter aids
            ↓-------------- concentration --------------↓
   preparation with KCl                        preparation with alcohol
            ↓                                           ↓
       gel pressing                                alcohol recovery 
            ↓                                           ↓
         drying                                      drying
            ↓                                           ↓ 
         milling                                     milling 
            ↓                                           ↓ 
         blending                                    blending
            ↓                                           ↓
    gel refined carrageenan                     refined carrageenan


The essential difference in the refining process is that the carrageenan is first dissolved and filtered to remove cell wall debris. The carrageenan is then precipitated from the clear solution either by isopropanol or by potassium chloride.[9]

Mixed processing[edit]

A hybrid technology in which seaweed is treated heterogeneously as in the semirefined process exists, but alcohol or high salt levels are used to inhibit dissolution. This process is often used on South American seaweeds and gives some of the cost benefits of semirefined processing, while allowing a wider range of seaweeds to be processed, however, the naturally low cellulose levels in some South American seaweeds allow them to be heterogeneously processed and still be sold under the EU refined specification.


See also: Food grading

There are two basic grades of carrageenan: refined carrageenan (RC) and semi-refined carrageenan (SRC). In the United States both grades are labeled as carrageenan. In the European Union, refined carrageenan is designated by the E number E-407, and semi-refined carrageenan as E-407a.[3] Refined carrageenan has a 2% maximum for acid insoluble material and is produced through an alcohol precipitation process or potassium chloride gel press process. Semi-refined carrageenan contains a much higher level of cellulosic content and is produced in a less complex process. Indonesia, the Philippines, and Chile are three main sources of raw material and extracted carrageenan.

Uses / applications[edit]

Food and other domestic uses[edit]

  • Desserts, ice cream, cream, milkshakes, yogurts, salad dressings, sweetened condensed milks
  • Sauces: used to increase viscosity
  • Beer: clarifier to remove haze-causing proteins
  • Pâtés and processed meats (ham, e.g.): substitute for fat, increase water retention, and increase volume, or improve sliceability
  • Toothpaste: stabilizer to prevent constituents separating
  • Fruit Gushers: ingredient in the encapsulated gel
  • Fire fighting foam: thickener to cause foam to become sticky
  • Shampoo and cosmetic creams: thickener
  • Air freshener gels
  • Marbling: the ancient art of paper and fabric marbling uses a carrageenan mixture on which to float paints or inks; the paper or fabric is then laid on it, absorbing the colours
  • Shoe polish: gel to increase viscosity
  • Biotechnology: gel to immobilize cells/enzymes
  • Pharmaceuticals: used as an inactive excipient in pills/tablets
  • Soy milk and other plant milks: used to thicken, in an attempt to emulate the consistency of whole milk
  • Diet sodas: to enhance texture and suspend flavours
  • Pet food
  • Personal lubricants
  • Vegetarian hot dogs

Regulatory status[edit]

In the U.S., carrageenan is allowed under FDA regulations[10] as a direct food additive and is considered safe[11] when used in the amount necessary as an emulsifier, stabilizer, or thickener in foods, except those standardized foods that do not provide for such use. FDA also reviewed carrageenan safety for infant formula.[12] The National Organic Program (NOP) added carrageenan to the National List;[13] reviewed and reauthorized in 2008[14] as "critical to organic production and handling operations".[15] The European Food Safety Authority concluded "there is no evidence of any adverse effects in humans from exposure to food-grade carrageenan, or that exposure to degraded carrageenan from use of food-grade carrageenan is occurring",[16] Furthermore, the Joint FAO/WHO expert committee on food additives stated in a July 2014 review of carrageenan "that the use of carrageenan in infant formula or formula for special medical purposes at concentrations up to 1000 mg/L is not of concern".[17]

Health research[edit]


Carrageenan has undergone long-term dietary studies under defined regulatory conditions en route to its current global regulatory status. It has been the subject of many peer-reviewed journal articles and has undergone scrutiny by independent food safety agencies and international review panels. While some indicate that carrageenan safely passes through rat GI tracts without adverse effect when it is a dietary ingredient,[18] other animal dietary studies have disputed its safety.[19]

In the most recent review by an independent panel, the Joint Expert Committee of the Food and Agriculture Organization of the United Nations and World Health Organization on Food Additives (JECFA) released a technical report in 2015 on the use of carrageenan in infant formula and found that the additive was ‘not of concern’ in infant formula as food for special medical purposes at concentrations up to 1000 milligrams per liter.[20]

The use of carrageenan in infant formula, organic or otherwise, is prohibited in the EU for precautionary reasons, but is permitted in other food items.[21] In the US, it is permitted in organic and non-organic foods, including juices, chocolate milk, and organic infant formula.

Animal studies[edit]

Some animal studies indicate tumor promotion or initiation by carrageenan.[22][23][24][25] In an industry-funded study, Cohen & Ito discuss methodological problems with four such studies, along with several evaluations of genotoxic activity, and state that there is no credible evidence that carrageenan contributes to tumor promotion or colon cancer.[26] In contrast, Tobacman's review of 45 publicly funded studies concludes that "the potential role of carrageenan in the development of gastrointestinal malignancy and inflammatory bowel disease requires careful reconsideration of the advisability of its continued use as a food additive."[19] As of 2011, Kanneganti et al. note that "the role of both CGN [carrageenan] and dCGN [degraded carrageenan] as carcinogens still remains controversial".[27]

Carrageenans function as a food additive relates to its large molecular weight (200,000–800,000 Da) and tight binding to food protein but also influences carrageenan's fate as it passes through the GI tract. Oral feeding studies with laboratory animals indicate dietary carrageenan is excreted quantitatively [28][29] and is not accumulated in body organs such as the liver or colon;[30] studies disagree with respect to whether it triggers gastrointestinal tract inflammation or contributes to tumor promotion.[19][31] Long-term oral feeding studies found no adverse effects on male or female infant baboons reared from birth to 112 days of age on infant formula containing carrageenan at five times the concentration typically present in human infant formula as their only diet[32] but did observe histopathologic changes in rhesus monkey colon after drinking a solution containing 1% undegraded carrageenan.[33] Similarly, while no adverse effects were observed for multi-generations of rats fed up to 5% dietary carrageenan,[34][35] or on hamsters and rats fed for a lifetime diets containing up to 5% carrageenan,[36][37] administration of carrageenan to rodents in drinking water has resulted in some observations of GI-tract effects.[38][39][40] Tight binding of carrageenan to ingested food proteins is considered less available than in drinking water for interaction with the absorptive cells of the GI tract, although some studies have linked food-grade carrageenan to gastrointestinal disease in laboratory animals, including ulcerative colitis-like disease, intestinal lesions, and ulcerations.[41][42][43][44][45]

Carrageenan is inert to hydrolysis by intestinal enzymes in both humans and monogastric animals.[46][47] Many older studies and a few recent studies have been based on the use of "degraded carrageenan", a fraction of low-molecular weight segments of the carrageenan molecular backbone called "poligeenan". To resolve this within the scientific community, the US Adopted Names Council assigned the name "poligeenan" to the fragments with molecular weight of 10,000 to 20,000 Da.[48][49] Approximately 8% of the fragments of food-grade carrageenan are of molecular mass less than 50,000 Da, in excess of the recommended minimum of 5% set by the European Scientific Committee on Food to ensure that the presence of poligeenan is kept to a minimum. The proportion of this 8% that consists of poligeenan is unknown.

Effects of radiation[edit]

It is possible that radiation degrades carrageenan[50] and degraded carrageenan may be associated with adverse health outcomes.[19] No studies have determined whether radiation-exposed Pacific seaweeds pose a danger to human health.

See also[edit]


  1. ^ FAO Agar and Carrageenan Manual. (1965-01-01). Retrieved on 2011-12-10.
  2. ^ a b [1], FAO Fisheries Technical Paper No. 441
  3. ^ a b "Current EU approved additives and their E Numbers". Food Standards Agency. 26 November 2010. Retrieved 12 August 2014. 
  4. ^, Marine Science Co. Ltd.
  5. ^ DeSilver, Drew (April 1993). "Answering Machine: Carra-what?". Vegetarian Times: 28. Retrieved 12 August 2014. 
  6. ^ a b Carrageenan Industry Report 2012 Contents (PDF) (Report). CyberColloids Ltd. 2012. Retrieved 6 April 2014. 
  7. ^ Pareño, Roel (14 September 2011). "DA: Phl to regain leadership in seaweed production". The Philippine Star. Retrieved 6 April 2014. 
  8. ^ CyberColloids: E407 Specification Carrageenan, CyberColloids, Hydrocolloids research and development webpage.
  9. ^ CyberColloids: E407a Specification Processed Eucheuma Seaweed, Hydrocolloids research and development webpage.
  10. ^ 21 Code of Federal Regulations 172.620
  11. ^ Generally Recognized As Safe 21 CRF §182.7255 GRAS ID Code 9000-07-1 (1973)
  12. ^ Federal Food, Drug, and Cosmetic Act 21 U.S.C. 350(a) §412
  13. ^ 68 FR 61993 (2003)
  14. ^ 65 FR 80548
  15. ^ 73 FR 59481
  16. ^ Opinion of the Scientific Committee on Food on Carrageenan (2003) [2] p. 5
  17. ^ Joint FAO/WHO Expert Committee on Food Additives. Retrieved on 2014-8-11.
  18. ^ Weiner ML, Nuber D, Blakemore WR et al., (2007) A 90-day dietary study of kappa carrageenan with emphasis on the gastrointestinal tract. Fd Chem Toxicol 45:98-106
  19. ^ a b c d Tobacman JK (2001). "Review of harmful gastrointestinal effects of carrageenan in animal experiments" (PDF). Environ Health Perspect 109 (10): 983–984. doi:10.1289/ehp.01109983. PMC 1242073. PMID 11675262. 
  20. ^ "Safety Evaluation of Certain Food Additives, 3" (PDF). Joint Expert Committee on Food Additives, WHO Food Additive Series: 70. 2015. 
  21. ^ "Opinion of the Scientific Committee on Food on Carrageenan" (PDF). European Commission, Scientific Committee on Food. 2003. 
  22. ^ Watanabe, K.; Reddy, B. S.; Wong, C. Q.; Weisburger, J. H. (1978). "Effect of dietary undergraded carrageenan on colon carcinogenesis in F344 rats treated with azoxymethane or methylnitrosourea" (PDF). Cancer Research 38 (12): 4427–4430. 
  23. ^ Taché, S; Peiffer, G; Millet, A-S; Corpet, DE (2000). "Carrageenan gel and aberrant crypt foci in the colon of conventional and human flora-associated rats". Nutr Cancer 37: 75–80. 
  24. ^ Oohashi, Yasuyuki; Ishioka, Tomonori; Wakabayashi, Kazuo; Kuwabara, Noriyuki (1981). "A study on carcinogenesis induced by degraded carrageenan arising from squamous metaplasia of the rat colorectum". Cancer Letters 14 (3): 267–272. doi:10.1016/0304-3835(81)90153-1. 
  25. ^ Corpet, DE; Taché, S; Préclaire, M (1997b). "Carrageenan given as a jelly, does not initiate, but promotes the growth of aberrant crypt foci in the rat colon". Cancer Lett 114: 53–55. doi:10.1016/s0304-3835(97)04624-7. 
  26. ^ Cohen, S; Ito, N (2002). "A critical review of the toxicological effects of carrageenan and processed eucheuma seaweed on the gastrointestinal tract". Crit Rev in Toxicol 32 (5): 413–444. doi:10.1080/20024091064282. 
  27. ^ Kanneganti, M., Mino-Kenudson, M., & Mizoguchi, E. (2011). Animal models of colitis-associated carcinogenesis. BioMed Research International, 2011.
  28. ^ Uno, Y; Omoto, T; Goto, Y; et al. ", (2001) Molecular weight and fecal excreted quantity of carrageenan administered to rats in blended feed". Japanese Journal of Food Chemistry 45 (1): 98–106. 
  29. ^ Weiner ML (1988) Intestinal transport of some macromolecules in food. Fd Chem Toxicol 26:867-880
  30. ^ Pittman, KA; Golberg, L; Coulston, F (1976). "Carrageenan: the effect of molecular weight and polymer type on its uptake, excretion and degradation in animals". Fd Cosmet Toxicol 14: 85–93. doi:10.1016/s0015-6264(76)80249-0. 
  31. ^ Weiner, ML; Nuber, D; Blakemore, WR; et al. (2007). "A 90-day dietary study of kappa carrageenan with emphasis on the gastrointestinal tract". Fd Chem Toxicol 45: 98–106. doi:10.1016/j.fct.2006.07.033. 
  32. ^ McGill HC,Jr., McMahan CA, Wigodsky HS, Sprinz H. (1977) Carrageenan in formula and infant baboon development. Gastroenterology 73:512-517
  33. ^ Mankes; Abraham (1975). "Review of harmful gastrointestinal effects of carrageenan in animal experiments" (PDF). Environ Health Perspect 109 (10): 983–984. doi:10.1289/ehp.01109983. PMC 1242073. PMID 11675262. 
  34. ^ Collins TFX, Black TN, Prew JH (1977a) Long-term effects of calcium carrageenan in rats. 1. Effects on reproduction. Fd Cosmet Toxicol 15:533-538
  35. ^ Collins, TFX; Black, TN; Prew, JH (1977b). "Long-term effects of calcium carrageenan in rats. II. Effects on fetal development". Fd Cosmet Toxicol 15: 539–545. doi:10.1016/0015-6264(77)90068-2. 
  36. ^ Rustia, M; Shubik, P; Patil, K (1980). "Lifespan carcinogenicity test with native carrageenan in rats and hamsters". Cancer Letters 11 (1): 1–10. doi:10.1016/0304-3835(80)90122-6. 
  37. ^ Abraham, R; Benitz, KF; Mankes, R; Rosenblum, I (1985). "Chronic and subchronic effects of various forms of carrageenan in rats". Ecotoxicology and Environmental Safety 10: 173–183. doi:10.1016/0147-6513(85)90063-6. 
  38. ^ Wilcox DK, Higgins J and Bertram TA (1992) Colonic epithelial cell proliferation in a rat model of nongenotoxin-induced colonic neoplasia Lab Invest 67(3):405-411
  39. ^ Calvert, RJ; Satchithanandam, S (1992). "Effects of graded levels of high-molecular-weight carrageenan on colonic mucosal thymidine kinase activity". Nutrition 8 (4): 252–257. 
  40. ^ Calvert, RJ; Reicks, M (1988). "Alterations in colonic thymidine kinase enzyme activity induced by consumption of various dietary fibers". Proc Soc Exp Biol Med 189 (1): 45–51. doi:10.3181/00379727-189-42778. 
  41. ^ Watt J and Marcus R (1969) Ulcerative colitis in the guinea-pig caused by seaweed extract. Journal of Pharmacy and Pharmacology 21:187S–188S
  42. ^ Grasso, P; Sharratt, M; Carpanini, FMB; Gangolli, SD (1973). "Studies on carrageenan and large-bowel ulceration in mammals". Food and Cosmetics Toxicology 11: 555–564. doi:10.1016/s0015-6264(73)80326-8. 
  43. ^ Engster M and Abraham R (1976) Cecal response to different molecular weights and types of carrageenan in the guinea pig. Toxicology and Applied Pharmacology 38:265–282
  44. ^ Watanabe, K; Reddy, BS; Wong, CQ; Weisburger, JH (1978). "Effect of dietary undegraded carrageenan on colon carcinogenesis in F344 rats treated with azoxymethane or methylnitrosourea". Cancer Research 38: 4427–4430. 
  45. ^ Review of harmful gastrointestinal effects of carrageenan in animal experiments J. K. Tobacman (2001)
  46. ^ Harmuth-Hoene AE and Schwerdtfeger E (1979) Effects of indigestible polysaccharides on protein digestibility and nitrogen retention in growing rats. Nutr Metab 23:399-407
  47. ^ Cummings, JH; Jenkins, DJA; Wiggins, HS (1976). "Measurement of the mean transit time of dietary residue through the human gut". Gut 17: 216–218. doi:10.1136/gut.17.3.210. 
  48. ^ United States Adopted Names Council (1988)
  49. ^ CAS Number 53973-98-1
  50. ^ L. Relleve, N. Nagasawa, L.Q. Luan, T. Yagi, C. Aranilla, L. Abad, T. Kume, F. Yoshii, A. dela Rosa (2005). "Degradation of carrageenan by radiation". Polymer Degradation and Stability 87 (3): 403–410. doi:10.1016/j.polymdegradstab.2004.09.003. 

Further reading[edit]

External links[edit]