Centered square number

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search

In elementary number theory, a centered square number is a centered figurate number that gives the number of dots in a square with a dot in the center and all other dots surrounding the center dot in successive square layers. That is, each centered square number equals the number of dots within a given city block distance of the center dot on a regular square lattice. While centered square numbers, like figurate numbers in general, have few if any direct practical applications, they are sometimes studied in recreational mathematics for their elegant geometric and arithmetic properties.

The figures for the first four centered square numbers are shown below:

GrayDot.svg     GrayDot.svg
GrayDot.svgGrayDot.svgGrayDot.svg
GrayDot.svg
    GrayDot.svg
GrayDot.svgGrayDot.svgGrayDot.svg
GrayDot.svgGrayDot.svgGrayDot.svgGrayDot.svgGrayDot.svg
GrayDot.svgGrayDot.svgGrayDot.svg
GrayDot.svg
    GrayDot.svg
GrayDot.svgGrayDot.svgGrayDot.svg
GrayDot.svgGrayDot.svgGrayDot.svgGrayDot.svgGrayDot.svg
GrayDot.svgGrayDot.svgGrayDot.svgGrayDot.svgGrayDot.svgGrayDot.svgGrayDot.svg
GrayDot.svgGrayDot.svgGrayDot.svgGrayDot.svgGrayDot.svg
GrayDot.svgGrayDot.svgGrayDot.svg
GrayDot.svg
           

Each centered square number is the sum of successive squares. Example: as shown in the following figure of Floyd's triangle, the centered square number 25 is the sum of the square 16 (yellow rhombus formed by shearing a square) and the next smaller square, 9 (sum of two blue triangles):

Centered square numbers (in red) are in the center of odd rows of Floyd's triangle.

Relationships with other figurate numbers[edit]

The nth centered square number, C4,n (where Cm,n generally represents the nth centered m-gonal number), is given by the formula:

In other words, a centered square number is the sum of two consecutive square numbers. The following pattern demonstrates this formula:

GrayDot.svg     RedDot.svg
RedDot.svgGrayDot.svgRedDot.svg
RedDot.svg
    GrayDot.svg
GrayDot.svgRedDot.svgGrayDot.svg
GrayDot.svgRedDot.svgGrayDot.svgRedDot.svgGrayDot.svg
GrayDot.svgRedDot.svgGrayDot.svg
GrayDot.svg
    RedDot.svg
RedDot.svgGrayDot.svgRedDot.svg
RedDot.svgGrayDot.svgRedDot.svgGrayDot.svgRedDot.svg
RedDot.svgGrayDot.svgRedDot.svgGrayDot.svgRedDot.svgGrayDot.svgRedDot.svg
RedDot.svgGrayDot.svgRedDot.svgGrayDot.svgRedDot.svg
RedDot.svgGrayDot.svgRedDot.svg
RedDot.svg
           

The formula can also be expressed as:

that is, the nth centered square number is half of the nth odd square number plus 1, as illustrated below:

GrayDot.svg     GrayDot.svgGrayDot.svgGrayDot.svg
GrayDot.svgGrayDot.svgMissingDot.svg
MissingDot.svgMissingDot.svgMissingDot.svg
    GrayDot.svgGrayDot.svgGrayDot.svgGrayDot.svgGrayDot.svg
GrayDot.svgGrayDot.svgGrayDot.svgGrayDot.svgGrayDot.svg
GrayDot.svgGrayDot.svgGrayDot.svgMissingDot.svgMissingDot.svg
MissingDot.svgMissingDot.svgMissingDot.svgMissingDot.svgMissingDot.svg
MissingDot.svgMissingDot.svgMissingDot.svgMissingDot.svgMissingDot.svg
    GrayDot.svgGrayDot.svgGrayDot.svgGrayDot.svgGrayDot.svgGrayDot.svgGrayDot.svg
GrayDot.svgGrayDot.svgGrayDot.svgGrayDot.svgGrayDot.svgGrayDot.svgGrayDot.svg
GrayDot.svgGrayDot.svgGrayDot.svgGrayDot.svgGrayDot.svgGrayDot.svgGrayDot.svg
GrayDot.svgGrayDot.svgGrayDot.svgGrayDot.svgMissingDot.svgMissingDot.svgMissingDot.svg
MissingDot.svgMissingDot.svgMissingDot.svgMissingDot.svgMissingDot.svgMissingDot.svgMissingDot.svg
MissingDot.svgMissingDot.svgMissingDot.svgMissingDot.svgMissingDot.svgMissingDot.svgMissingDot.svg
MissingDot.svgMissingDot.svgMissingDot.svgMissingDot.svgMissingDot.svgMissingDot.svgMissingDot.svg
           

Like all centered polygonal numbers, centered square numbers can also be expressed in terms of triangular numbers:

where

is the nth triangular number. This can be easily seen by removing the center dot and dividing the rest of the figure into four triangles, as below:

BlackDot.svg     RedDot.svg
GrayDot.svgBlackDot.svgGrayDot.svg
RedDot.svg
    RedDot.svg
RedDot.svgRedDot.svgGrayDot.svg
GrayDot.svgGrayDot.svgBlackDot.svgGrayDot.svgGrayDot.svg
GrayDot.svgRedDot.svgRedDot.svg
RedDot.svg
    RedDot.svg
RedDot.svgRedDot.svgGrayDot.svg
RedDot.svgRedDot.svgRedDot.svgGrayDot.svgGrayDot.svg
GrayDot.svgGrayDot.svgGrayDot.svgBlackDot.svgGrayDot.svgGrayDot.svgGrayDot.svg
GrayDot.svgGrayDot.svgRedDot.svgRedDot.svgRedDot.svg
GrayDot.svgRedDot.svgRedDot.svg
RedDot.svg
           

The difference between two consecutive octahedral numbers is a centered square number (Conway and Guy, p.50).

Another way the centered square numbers can be expressed is:

where

Yet another way the centered square numbers can be expressed is in terms of the centered triangular numbers:

where

The Generating Function[edit]

The generating function that gives the centered square numbers is:

Properties[edit]

The first centered square numbers (n < 4500) are:

1, 5, 13, 25, 41, 61, 85, 113, 145, 181, 221, 265, 313, 365, 421, 481, 545, 613, 685, 761, 841, 925, 1013, 1105, 1201, 1301, 1405, 1513, 1625, 1741, 1861, 1985, 2113, 2245, 2381, 2521, 2665, 2813, 2965, 3121, 3281, 3445, 3613, 3785, 3961, 4141, 4325, … (sequence A001844 in the OEIS).

All centered square numbers are odd, and in base 10 one can notice the one's digit follows the pattern 1-5-3-5-1.

All centered square numbers and their divisors have a remainder of 1 when divided by 4. Hence all centered square numbers and their divisors end with digits 1 or 5 in base 6, 8, or 12.

Every centered square number except 1 is the hypotenuse of a Pythagorean triple (for example, 3-4-5, 5-12-13, 7-24-25). This is exactly the sequence of Pythagorean triples where the two longest sides differ by 1.

References[edit]

  • Alfred, U. (1962), "n and n + 1 consecutive integers with equal sums of squares", Mathematics Magazine, 35 (3): 155–164, JSTOR 2688938, MR 1571197.
  • Apostol, Tom M. (1976), Introduction to analytic number theory, Undergraduate Texts in Mathematics, New York-Heidelberg: Springer-Verlag, ISBN 978-0-387-90163-3, MR 0434929, Zbl 0335.10001.
  • Beiler, A. H. (1964), Recreations in the Theory of Numbers, New York: Dover, p. 125.
  • Conway, John H.; Guy, Richard K. (1996), The Book of Numbers, New York: Copernicus, pp. 41–42, ISBN 0-387-97993-X, MR 1411676.