Cerium(III) bromide

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
Cerium(III) bromide
UCl3 without caption.png
Cerium bromide (space filling) 2.png
Anhydrous cerium(III) bromide
IUPAC names
Cerium(III) bromide
Cerium tribromide
Other names
Cerous bromide
3D model (JSmol)
ECHA InfoCard 100.034.936
Molar mass 379.828 g/mol
Appearance grey to white solid, hygroscopic
Density 5.1 g/cm3, solid
Melting point 722 °C (1,332 °F; 995 K)
Boiling point 1,457 °C (2,655 °F; 1,730 K)
Not Published Yet
hexagonal (UCl3 type), hP8
P63/m, No. 176
Tricapped trigonal prismatic
not listed
Flash point Non-flammable
Related compounds
Other anions
Cerium(III) fluoride
Cerium(III) chloride
Cerium(III) iodide
Other cations
Lanthanum(III) bromide
Praseodymium(III) bromide
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☑Y verify (what is ☑Y☒N ?)
Infobox references

Cerium(III) bromide is an inorganic compound with the formula CeBr3. This white hygroscopic solid is of interest as a component of scintillation counters.

Preparation and basic properties[edit]

The compound has been known since at least 1899, when Muthman and Stützel reported its preparation from cerium sulfide and gaseous HBr.[1] Aqueous solutions of CeBr3 can be prepared from the reaction of Ce2(CO3)3·H2O with HBr. The product, CeBr3·H2O can be dehydrated by heating with NH4Br followed by sublimation of residual NH4Br. CeBr3 can be distilled at reduced pressure (~ 0.1 Pa) in a quartz ampoule at 875-880 °C.[2] Like the related salt CeCl3, the bromide absorbs water on exposure to moist air. The compound melts congruently at 722 °C, and well ordered single crystals may be produced using standard crystal growth methods like Bridgman or Czochralski.

CeBr3 adopts the hexagonal, UCl3-type crystal structure with P63/m Space group.[3]


CeBr3-doped lanthanum bromide single crystals are known to exhibit superior scintillation properties for applications in the security, medical imaging, and geophysics detectors.[4][5]

Undoped single crystals of CeBr3 have shown promise as a γ-ray scintillation detector in nuclear non-proliferation testing, medical imaging, environmental remediation, and oil exploration.[6]



  1. ^ Muthmann, W.; Stützel, L. (1899). "Eine einfache Methode zur Darstellung der Schwefel-, Chlor- und Brom-Verbindungen der Ceritmetalle". Berichte der deutschen chemischen Gesellschaft (in German). Wiley. 32 (3): 3413–3419. doi:10.1002/cber.189903203115. ISSN 0365-9496.
  2. ^ Rycerz, L.; Ingier-Stocka, E.; Berkani, M.; Gaune-Escard, M. (2007). "Thermodynamic Functions of Congruently Melting Compounds Formed in the CeBr3−KBr Binary System". Journal of Chemical & Engineering Data. American Chemical Society (ACS). 52 (4): 1209–1212. doi:10.1021/je600517u. ISSN 0021-9568.
  3. ^ Morosin, B. (1968). "Crystal Structures of Anhydrous Rare‐Earth Chlorides". The Journal of Chemical Physics. AIP Publishing. 49 (7): 3007–3012. doi:10.1063/1.1670543. ISSN 0021-9606.
  4. ^ van Loef, E. V. D.; Dorenbos, P.; van Eijk, C. W. E.; Krämer, K.; Güdel, H. U. (2001-09-03). "High-energy-resolution scintillator: Ce3+ activated LaBr3". Applied Physics Letters. AIP Publishing. 79 (10): 1573–1575. doi:10.1063/1.1385342. ISSN 0003-6951.
  5. ^ Menge, Peter R.; Gautier, G.; Iltis, A.; Rozsa, C.; Solovyev, V. (2007). "Performance of large lanthanum bromide scintillators". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. Elsevier BV. 579 (1): 6–10. doi:10.1016/j.nima.2007.04.002. ISSN 0168-9002.
  6. ^ Higgins, W.M.; Churilov, A.; van Loef, E.; Glodo, J.; Squillante, M.; Shah, K. (2008). "Crystal growth of large diameter LaBr3:Ce and CeBr3". Journal of Crystal Growth. Elsevier BV. 310 (7–9): 2085–2089. doi:10.1016/j.jcrysgro.2007.12.041. ISSN 0022-0248.