Ceruletide

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Ceruletide
Ceruletide.png
Clinical data
AHFS/Drugs.com International Drug Names
ATC code
Identifiers
CAS Number
PubChem CID
DrugBank
ChemSpider
UNII
KEGG
ChEMBL
Chemical and physical data
Formula C58H73N13O21S2
Molar mass 1352.40 g/mol
 NYesY (what is this?)  (verify)

Ceruletide (INN), also known as cerulein or caerulein, is a ten amino acid oligopeptide that stimulates smooth muscle and increases digestive secretions. Ceruletide is similar in action and composition to cholecystokinin. It stimulates gastric, biliary, and pancreatic secretion; and certain smooth muscle. It is used in paralytic ileus and as diagnostic aid in pancreatic malfunction. It is used to induce pancreatitis in experimental animal models.

The tree frog Litoria caerulae, formerly named Hyla caerulae.

Ceruletide was discovered and its structure elucidated in 1967 by Australian and Italian scientists from dried skins of the Australian green tree frog (Litoria caerulea, formerly Hyla caerulea). Its amino acid sequence is Pglu-Gln-Asp-Tyr[SO3H]-Thr-Gly-Trp-Met-Asp-Phe-NH2.[1][2]

Induction of pancreatitis[edit]

Ceruletide upregulates pancreatic acinar cell intercellular adhesion molecule-1 (ICAM-1) proteins through intracellular upregulation of NF-κB. Surface ICAM-1 in turn promotes neutrophil adhesion onto acinar cells enhancing pancreatic inflammation.[3] In addition to promoting the inflammatory cell reaction to acinar cells, ceruletide induces pancreatitis through dysregulation of digestive enzyme production and cytoplasmic vacuolization, leading to acinar cell death and pancreatic edema. Ceruletide also activates NADPH oxidase, a source of reactive oxygen species contributing to inflammation, as well as the Janus kinase/signal transducer, another inflammation inducer.[4]

See also[edit]

References[edit]

  1. ^ A. Anastasi; V. Erspamer; R. Endean (1967). "Isolation and structure of caerulein, an active decapeptide from the skin of Hyla caerulea". Experentia. 23 (9): 699–700. doi:10.1007/BF02154119. 
  2. ^ G. De Caro; R. Endean; V. Esparmer; M. Roseghini (1968). "Occurrence of caerulein in extracts of the skin of Hyla caerulea and other Australian hylids". Br J of Pharmac Chemother. 33 (1): 48–58. doi:10.1111/j.1476-5381.1968.tb00473.x. PMC 1570274Freely accessible. PMID 5660165. 
  3. ^ V. Zaninovic; A. S. Gukovskaya; I. Gukovsky; M. Mouria; S. J. Pandol (2000). "Cerulein upregulates ICAM-1 in pancreatic acinar cells, which mediates neutrophil adhesion to these cells" (PDF). Am J Physiol Gastrointest Liver Physiol. 279 (4): G666–676. PMID 11005752. 
  4. ^ H. Kim (2008). "Cerulein Pancreatitis: Oxidative Stress, Inflammation, and Apoptosis". Gut and liver. 2 (2): 74–80. doi:10.5009/gnl.2008.2.2.74. PMC 2871591Freely accessible. PMID 20485614.