Chemical revolution

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Geoffroy's 1718 Affinity Table: at the head of each column is a chemical species with which all the species below can combine. Some historians have defined this table as being the start of the chemical revolution.[1]

The chemical revolution, also called the first chemical revolution, was the early modern reformulation of chemistry that culminated in the law of conservation of mass and the oxygen theory of combustion. During the 19th and 20th century, this transformation was credited to the work of the French chemist Antoine Lavoisier (the "father of modern chemistry").[2] However, recent work on the history of early modern chemistry considers the chemical revolution to consist of gradual changes in chemical theory and practice that emerged over a period of two centuries.[3] The so-called scientific revolution took place during the sixteenth and seventeenth centuries whereas the chemical revolution took place during the seventeenth and eighteenth centuries.[4]

Primary factors[edit]

Several factors led to the first chemical revolution. First, there were the forms of gravimetric analysis that emerged from alchemy and new kinds of instruments that were developed in medical and industrial contexts. In these settings, chemists increasingly challenged hypotheses that had already been presented by the ancient Greeks. For example, chemists began to assert that all structures were composed of more than the four elements of the Greeks or the eight elements of the medieval alchemists. The Irish alchemist, Robert Boyle, laid the foundations for the Chemical Revolution, with his mechanical corpuscular philosophy, which in turn relied heavily on the alchemical corpuscular theory and experimental method dating back to pseudo-Geber.[5]

Other factors included new experimental techniques and the discovery of 'fixed air' (carbon dioxide) by Joseph Black in the middle of the 18th century. This discovery was particularly important because it empirically proved that 'air' did not consist of only one substance and because it established 'gas' as an important experimental substance. Nearer the end of the 18th century, the experiments by Henry Cavendish and Joseph Priestley further proved that air is not an element and is instead composed of several different gases. Lavoisier also translated the names of chemical substance into a new nomenclatural language more appealing to scientists of the nineteenth century. Such changes took place in an atmosphere in which the industrial revolution increased public interest in learning and practicing chemistry. When describing the task of reinventing chemical nomenclature, Lavoisier attempted to harness the new centrality of chemistry by making the rather hyperbolic claim that:[6]

Precision instruments[edit]

Much of the reasoning behind Antoine Lavoisier being named the "father of modern chemistry" and the start of the chemical revolution lay in his ability to mathematize the field, pushing chemistry to use the experimental methods utilized in other "more exact sciences."[7] Lavoisier changed the field of chemistry by keeping meticulous balance sheets in his research, attempting to show that through the transformation of chemical species the total amount of substance was conserved. Lavoisier used instrumentation for thermometric and barometric measurements in his experiments, and collaborated with Pierre Simon de Laplace in the invention of the calorimeter, an instrument for measuring heat changes in a reaction.[7] In attempting to dismantle phlogiston theory and implement his own theory of combustion, Lavoisier utilized multiple apparatuses. These included a red-hot iron gun barrel which was designed to have water run through it and decomposed, and an alteration of the apparatus which implemented a pneumatic trough at one end, a thermometer, and a barometer. The precision of his measurements were a requirement in convincing opposition of his theories about water as a compound, with instrumentation designed by himself implemented in his research.

Despite having precise measurements for his work, Lavoisier faced a large amount of opposition in his research. Proponents of phlogiston theory, such as Keir and Priestley, claimed that demonstration of facts was only applicable for raw phenomena, and that interpretation of these facts did not imply accuracy in theories. They stated that Lavoisier was attempting to impose order on observed phenomena, whereas a secondary source of validity would be required to give definitive proof of the composition of water and non-existence of phlogiston.[7]

Antoine Lavoisier[edit]

The latter stages of the revolution was fuelled by the 1789 publication of Lavoisier's Traité Élémentaire de Chimie (Elements of Chemistry). Beginning with this publication and others to follow, Lavoisier synthesised the work of others and coined the term "oxygen". Antoine Lavoisier represented the chemical revolution not only in his publications, but also in the way he practiced chemistry. Lavoisier's work was characterized by his systematic determination of weights and his strong emphasis on precision and accuracy.[8] The law of the conservation of mass, that the weight of matter would be conserved through any reaction, was discovered by Antoine Lavoisier in the late 18th century and represented his careful conduction of research.

Lavoisier also contributed to chemistry a method of understanding combustion and respiration and proof of the composition of water by decomposition into its constituent parts. He explained the theory of combustion, and challenged the phlogiston theory with his views on caloric. The Traité incorporates notions of a "new chemistry" and describes the experiments and reasoning that led to his conclusions. Like Newton's Principia, which was the high point of the Scientific Revolution, Lavoisier's Traité can be seen as the culmination of the Chemical Revolution.

Lavoisier's work was not immediately accepted and it took several decades for it gain momentum.[9] This transition was aided by the work of Jöns Jakob Berzelius, who came up with a simplified shorthand to describe chemical compounds based on John Dalton's theory of atomic weights. Many people credit Lavoisier and his overthrow of phlogiston theory as the traditional chemical revolution, with Lavoisier marking the beginning of the revolution and John Dalton marking its culmination.

Traité élémentaire de chimie[edit]

One of Lavoisier's main influences was Étienne Bonnet, abbé de Condillac. Condillac's approach to scientific research, which was the basis of Lavoisier's approach in Traité, was to demonstrate that human beings could create a mental representation of the world using gathered evidence. In Lavoisier's preface to Traité, he states

It is a maxim universally admitted in geometry, and indeed in every branch of knowledge, that, in the progress of investigation, we should proceed from known facts to what is unknown. ... In this manner, from a series of sensations, observations, and analyses, a successive train of ideas arises, so linked together, that an attentive observer may trace back to a certain point the order and connection of the whole sum of human knowledge.[10]

Lavoisier clearly ties his ideas in with those of Condillac, seeking to reform the field of chemistry. His goal in Traité was to associate the field with direct experience and observation, rather than assumption. His work defined a new foundation for the basis of chemical ideas and set a direction for the future course of chemistry.[11]

Méthode de nomenclature chimique[edit]

Antoine Lavoisier, in a collaborative effort with Louis Bernard Guyton de Morveau, Claude Louis Berthollet, and Antoine François de Fourcroy, published Méthode de nomenclature chimique in 1787.[12] This work established a terminology for the "new chemistry" which Lavoisier was creating, which focused on a standardized set of terms, establishment of new elements, and experimental work. Méthode established 55 elements which were substances that could not be broken down into simpler composite parts at the time of publishing. By introducing new terminology into the field, Lavoisier encouraged other chemists to adopt his theories and practices in order to use his terms and stay current in chemistry.


  1. ^ Kim, Mi Gyung (2003). Affinity, That Elusive Dream: A Genealogy of the Chemical Revolution. MIT Press. ISBN 978-0-262-11273-4. 
  2. ^ The First Chemical Revolution Archived April 26, 2009, at the Wayback Machine. – the Instrument Project, The College of Wooster
  3. ^ Matthew Daniel Eddy; Seymour Mauskopf; William R. Newman (2014). "An Introduction to Chemical Knowledge in the Early Modern World". Osiris. 29: 1–15. doi:10.1086/678110. 
  4. ^ Matthew Daniel Eddy, Seymour Mauskopf and William R. Newman (Eds.) (2014). Chemical Knowledge in the Early Modern World. Chicago: University of Chicago Press. 
  5. ^ Ursula Klein (July 2007). "Styles of Experimentation and Alchemical Matter Theory in the Scientific Revolution". Metascience. Springer. 16 (2): 247–256 [247]. ISSN 1467-9981. doi:10.1007/s11016-007-9095-8. 
  6. ^ Jaffe, B. (1976). Crucibles: The Story of Chemistry from Alchemy to Nuclear Fission (4th ed.). New York: Dover Publications. ISBN 978-0-486-23342-0. 
  7. ^ a b c Golinski, Jan. "Precision instruments and the demonstrative order of proof in Lavoisier's chemistry". Osiris. 1994: 30–47. 
  8. ^ Levere, Trevor (2001). Transforming Matter. Baltimore, Maryland: The Johns Hopkins University Press. ISBN 0-8018-6610-3. 
  9. ^ Eddy, Matthew Daniel (2008). The Language of Mineralogy: John Walker, Chemistry and the Edinburgh Medical School 1750-1800. Ashgate. 
  10. ^ Antoine-Laurent Lavoisier, Elements of Chemistry, trans. Robert Kerr (Edinburgh, 1790; facs. reprint New York: Dover, 1965), pp. xv-xvi.
  11. ^ Dear, Peter (2006). The Intelligibility of Nature. The University of Chicago Press. pp. 74–75. 
  12. ^ Duveen, Denis; Klickstein, Herbert (Sep 1954). "The Introduction of Lavoisier's Chemical Nomenclature into America". Isis. 45 (3). 

Further reading[edit]

External links[edit]